利用一种电磁型主控式干摩擦阻尼器(active magnetic dry friction damper,AMDFD)来改变支承的阻尼,以实现对航空发动机转子系统支承结构外传振动的有效控制。在传统的双转子系统动力学模型基础上,建立了能够表征支承外传振动的AMDFD-...利用一种电磁型主控式干摩擦阻尼器(active magnetic dry friction damper,AMDFD)来改变支承的阻尼,以实现对航空发动机转子系统支承结构外传振动的有效控制。在传统的双转子系统动力学模型基础上,建立了能够表征支承外传振动的AMDFD-双转子-轴承座动力学模型;采用转速区间开关控制器和无模型自适应控制器,对AMDFD抑制转子支承结构外传振动的有效性进行了仿真分析,并阐明了AMDFD抑制支承结构外传振动的内在机理。在搭建的AMDFD-双转子系统试验台上,进行了双转子系统加速通过多阶临界转速区时支承结构外传振动的主动控制试验。结果表明,利用转速区间的开关控制器和无模型自适应控制器,AMDFD能够有效地降低各支承位置在各阶临界转速区的外传振动,降低幅度均超过了52%。展开更多
文摘利用一种电磁型主控式干摩擦阻尼器(active magnetic dry friction damper,AMDFD)来改变支承的阻尼,以实现对航空发动机转子系统支承结构外传振动的有效控制。在传统的双转子系统动力学模型基础上,建立了能够表征支承外传振动的AMDFD-双转子-轴承座动力学模型;采用转速区间开关控制器和无模型自适应控制器,对AMDFD抑制转子支承结构外传振动的有效性进行了仿真分析,并阐明了AMDFD抑制支承结构外传振动的内在机理。在搭建的AMDFD-双转子系统试验台上,进行了双转子系统加速通过多阶临界转速区时支承结构外传振动的主动控制试验。结果表明,利用转速区间的开关控制器和无模型自适应控制器,AMDFD能够有效地降低各支承位置在各阶临界转速区的外传振动,降低幅度均超过了52%。