Using over 3 500 first P arrival times recorded by nine digital seismic stations from Hainan Digital Seismic Net-work during 1999~2005,a 3-D P-wave velocity model of the crust under Hainan Island and adjacent regions...Using over 3 500 first P arrival times recorded by nine digital seismic stations from Hainan Digital Seismic Net-work during 1999~2005,a 3-D P-wave velocity model of the crust under Hainan Island and adjacent regions has been determined. The results show that the pattern of velocity anomalies in the shallower upper crust is somewhat associated with the surface geological tectonics in the region. A relative low-velocity anomaly appears north of the Wangwu-Wenjiao fault zone and a relative high-velocity anomaly appears south of the Wangwu-Wenjiao fault zone,corresponding to the depressed areas in north Hainan Island,where many volcanoes are frequently active and geothermal values are relatively higher,and the uplifted and stable regions in central and south of the Hainan Is-land. In the middle and lower crust velocities are relatively lower in east Hainan than those in west Hainan,possi-bly suggesting the existence of the upwelling of hot materials from the mantle in east Hainan. The pattern of veloc-ity anomalies also indicates that NW faults,i.e.,the Puqian-Qinglan fault,may be shallower,while the E-W Wangwu-Wenjiao fault may be deeper,which perhaps extends down to Moho depth or deeper.展开更多
A superposing principle, by suitably adding the strain waves from a number of concentrated explosive charges to approximate the waves generated by a cylindrical charge based on the strain wave of a point or small sphe...A superposing principle, by suitably adding the strain waves from a number of concentrated explosive charges to approximate the waves generated by a cylindrical charge based on the strain wave of a point or small spherical explosive charge generated in rock, is used to further study the triggering time of strain gauges installed in radial direction at same distances but different positions surrounding a cylindrical explosive charge in rock. The duration of the first compression phase and peak value of strain wave, and furthermore, their differences are analyzed and some explanations are given. Besides that, the gauge orientation in which the maximum peak value occurs is also discussed. At last, the effect of velocity of detonation(V.O.D.) of a cylindrical explosive charge on the strain waves generated in the surrounding rock is taken as key research and the pattern of peak amplitude of a strain wave varies with the V.O.D. is likely to have been found.展开更多
We estimated crustal v p/ v s ratio of Tibetan Plateau by combined inversion of Love and Rayleigh wave dispersion data. It is developed by us that the joint inversion methods using both Love and Rayleigh wave dispersi...We estimated crustal v p/ v s ratio of Tibetan Plateau by combined inversion of Love and Rayleigh wave dispersion data. It is developed by us that the joint inversion methods using both Love and Rayleigh wave dispersion data. Thickness and S\|wave velocity of each sub layer are taken from Love wave dispersion data, then P\|wave velocity structure was deduced using Rayleigh wave dispersion data. Densities of sub layers were estimated by the empirical relationships between seismic velocity and rock density. Having S\| and P\|wave velocities, v p/ v s ratio is calculated for each sub layer. Six sub layers in crust of Tibetan Plateau has been identified, which are 0~8km, 8~30km, 30~40km, 40~62km, 62~68km and 68~75km respectively. The S\|wave velocity structure of the Plateau is 3 13, 3 32, 3 15, 3 92, 3 45 and 3 87 km/s for each sub layer; and P\|wave velocities are 6 00, 6 10, 5 72, 6 35, 6 78 and 6 64km/s respectively v p/ v s ratios in sub layers are 1 92, 1 84, 1 82, 1 62, 1 96 and 1 72; and corresponding Poisson ratios are 0 31, 0 29, 0 28, 0 19, 0 32 and 0 24. Our result on Poisson ratios of Tibetan crust was supported by seismic waveform modelling by Rodgers and Schwartz (1998).展开更多
基金The special project of Detection of Haikou City Earthquake Active Faults from the Tenth Five-year Plan of China Earthquake Administration (0106512)Joint Seismological Science Foundation of China (105086)CAS Key Laboratory of Marginal Sea Geology (MSGL0503).
文摘Using over 3 500 first P arrival times recorded by nine digital seismic stations from Hainan Digital Seismic Net-work during 1999~2005,a 3-D P-wave velocity model of the crust under Hainan Island and adjacent regions has been determined. The results show that the pattern of velocity anomalies in the shallower upper crust is somewhat associated with the surface geological tectonics in the region. A relative low-velocity anomaly appears north of the Wangwu-Wenjiao fault zone and a relative high-velocity anomaly appears south of the Wangwu-Wenjiao fault zone,corresponding to the depressed areas in north Hainan Island,where many volcanoes are frequently active and geothermal values are relatively higher,and the uplifted and stable regions in central and south of the Hainan Is-land. In the middle and lower crust velocities are relatively lower in east Hainan than those in west Hainan,possi-bly suggesting the existence of the upwelling of hot materials from the mantle in east Hainan. The pattern of veloc-ity anomalies also indicates that NW faults,i.e.,the Puqian-Qinglan fault,may be shallower,while the E-W Wangwu-Wenjiao fault may be deeper,which perhaps extends down to Moho depth or deeper.
基金Key Project Process Mechanism and Prediction of Geological Hazards (2001CB711005-1-3) and State Key Basic Research Project Mechanism and Prediction of Continental Earthquakes (G1998040702). sponsored by the Ministry of Science and Techno
基金Projects(51304239,51374243)supported by the National Natural Science Foundation of China
文摘A superposing principle, by suitably adding the strain waves from a number of concentrated explosive charges to approximate the waves generated by a cylindrical charge based on the strain wave of a point or small spherical explosive charge generated in rock, is used to further study the triggering time of strain gauges installed in radial direction at same distances but different positions surrounding a cylindrical explosive charge in rock. The duration of the first compression phase and peak value of strain wave, and furthermore, their differences are analyzed and some explanations are given. Besides that, the gauge orientation in which the maximum peak value occurs is also discussed. At last, the effect of velocity of detonation(V.O.D.) of a cylindrical explosive charge on the strain waves generated in the surrounding rock is taken as key research and the pattern of peak amplitude of a strain wave varies with the V.O.D. is likely to have been found.
文摘We estimated crustal v p/ v s ratio of Tibetan Plateau by combined inversion of Love and Rayleigh wave dispersion data. It is developed by us that the joint inversion methods using both Love and Rayleigh wave dispersion data. Thickness and S\|wave velocity of each sub layer are taken from Love wave dispersion data, then P\|wave velocity structure was deduced using Rayleigh wave dispersion data. Densities of sub layers were estimated by the empirical relationships between seismic velocity and rock density. Having S\| and P\|wave velocities, v p/ v s ratio is calculated for each sub layer. Six sub layers in crust of Tibetan Plateau has been identified, which are 0~8km, 8~30km, 30~40km, 40~62km, 62~68km and 68~75km respectively. The S\|wave velocity structure of the Plateau is 3 13, 3 32, 3 15, 3 92, 3 45 and 3 87 km/s for each sub layer; and P\|wave velocities are 6 00, 6 10, 5 72, 6 35, 6 78 and 6 64km/s respectively v p/ v s ratios in sub layers are 1 92, 1 84, 1 82, 1 62, 1 96 and 1 72; and corresponding Poisson ratios are 0 31, 0 29, 0 28, 0 19, 0 32 and 0 24. Our result on Poisson ratios of Tibetan crust was supported by seismic waveform modelling by Rodgers and Schwartz (1998).