期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation wave 被引量:12
1
作者 Quan Zheng Hao-long Meng +3 位作者 Chun-sheng Weng Yu-wen Wu Wen-kang Feng Ming-liang Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第6期1106-1115,共10页
In order to study the instability propagation characteristics of the liquid kerosene rotating detonation wave(RDW),a series of experimental tests were carried out on the rotating detonation combustor(RDC)with air-heat... In order to study the instability propagation characteristics of the liquid kerosene rotating detonation wave(RDW),a series of experimental tests were carried out on the rotating detonation combustor(RDC)with air-heater.The fuel and oxidizer are room-temperature liquid kerosene and preheated oxygenenriched air,respectively.The experimental tests keep the equivalence ratio of 0.81 and the oxygen mass fraction of 35%unchanged,and the total mass flow rate is maintained at about 1000 g/s,changing the total temperature of the oxygen-enriched air from 620 K to 860 K.Three different types of instability were observed in the experiments:temporal and spatial instability,mode transition and re-initiation.The interaction between RDW and supply plenum may be the main reason for the fluctuations of detonation wave velocity and pressure peaks with time.Moreover,the inconsistent mixing of fuel and oxidizer at different circumferential positions is related to RDW oscillate spatially.The phenomenon of single-double-single wave transition is analyzed.During the transition,the initial RDW weakens until disappears,and the compression wave strengthens until it becomes a new RDWand propagates steadily.The increased deflagration between the detonation products and the fresh gas layer caused by excessively high temperature is one of the reasons for the RDC quenching and re-initiation. 展开更多
关键词 Rotating detonation wave Liquid kerosene oxygen-enriched air Instability propagation characteristics Compression wave
在线阅读 下载PDF
Experimental and numerical analysis of secondary disasters induced by oxygen rich combustion within a tunnel 被引量:2
2
作者 Cheng Caixia Sun Fuchun +2 位作者 Zhou Xinquan Niu Huiyong Liang De 《Mining Science and Technology》 EI CAS 2011年第6期897-901,共5页
Various physical parameters, including gas concentrations (O2, CO, CH4, and H2) and temperatures at dif- ferent air velocities, were determined for full scale wood fires in the Chongqing Coal Research Institute fire t... Various physical parameters, including gas concentrations (O2, CO, CH4, and H2) and temperatures at dif- ferent air velocities, were determined for full scale wood fires in the Chongqing Coal Research Institute fire test tunnel. Both experimental measurements and numerical simulations are discussed. The numer- ical analysis was performed with the computational fluid dynamics software package ''FLUENT''. The results show that the experimental data agree with the simulation results. The results verify that Roberts' theory of burning is correct. They also prove that the air velocity is the key factor that determines the type of combustion. Also, it is shown that secondary disasters are unlikely for oxygen rich combustion with a limited fire load. 展开更多
关键词 Numerical analysis Combustion type oxygen-enriched combustion Secondary disasters
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部