期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance 被引量:1
1
作者 ZHAI Haoying WEN Lanzong +3 位作者 LIAO Wenjie LI Qin ZHOU Wenjun CAO Kun 《无机化学学报》 北大核心 2025年第5期1037-1048,共12页
Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nano... Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance. 展开更多
关键词 hydrothermal method tannic acid metal‑organic framework ELECTROCATALYSIS oxygen evolution reaction
在线阅读 下载PDF
Ru⁃doped Co_(3)O_(4)/reduced graphene oxide:Preparation and electrocatalytic oxygen evolution property 被引量:1
2
作者 TIAN Tian ZHOU Meng +5 位作者 WEI Jiale LIU Yize MO Yifan YE Yuhan JIA Wenzhi HE Bin 《无机化学学报》 北大核心 2025年第2期385-394,共10页
Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then... Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2). 展开更多
关键词 metal-organic framework GRAPHENE ELECTROCATALYST oxygen evolution reaction
在线阅读 下载PDF
Theoretical Insights into the Atomic and Electronic Structures of Polyperyleneimide:On the Origin of Photocatalytic Oxygen Evolution Activity
3
作者 Yi-Qing Wang Zhi Lin +1 位作者 Ming-Tao Li Shao-Hua Shen 《电化学(中英文)》 北大核心 2025年第5期28-36,共9页
Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Her... Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution. 展开更多
关键词 Photocatalytic oxygen evolution Polymeric perylene diimide Atomic structure Electronic structure Reaction pathway
在线阅读 下载PDF
Ionic Liquid Enhanced Proton Transfer for Neutral Oxygen Evolution Reaction
4
作者 Ming-Xing Chen Nian Liu +2 位作者 Zi-He Du Jing Qi Rui Cao 《电化学(中英文)》 北大核心 2025年第7期27-36,共10页
The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled elec... The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled electron transfer(PCET)hinders the overall OER efficiency.Herein,we report an ionic liquid(IL)modified CoSn(OH)_(6)nanocubes(denoted as CoS-n(OH)_(6)-IL),which could be prepared through a facile strategy.The modified IL would not change the structural character-istics of CoSn(OH)_(6),but could effectively regulate the local proton activity near the active sites.The CoSn(OH)_(6)-IL exhibited higher intrinsic OER performances than the pristine CoSn(OH)_(6)in neutral media.For example,the current density of CoS-n(OH)_(6)-IL at 1.8 V versus reversible hydrogen electrode(RHE)was about 4 times higher than that of CoSn(OH)_(6).According to the pH-dependent kinetic investigations,operando electrochemical impedance spectroscopic,chemical probe tests,and deuterium kinetic isotope effects,the interfacial layer of IL could be utilized as a proton transfer mediator to promote the proton transfer,which enhances the surface coverage of OER intermediates and reduces the activation barrier.Consequent-ly,the sluggish OER kinetics would be efficiently accelerated.This study provides a facile and effective strategy to facilitate the PCET processes and is beneficial to guide the rational design of OER electrocatalysts. 展开更多
关键词 ELECTROCATALYSIS oxygen evolution reaction Ionic liquid Proton transfer CoSn(OH)_(6)nanocube
在线阅读 下载PDF
Metal‑organic framework‑templated construction of FeOOH@CoMoO_(4)/nickel foam heterostructure for enhanced oxygen evolution reaction
5
作者 YANG Shaohua GAO Na'na GONG Yaqiong 《无机化学学报》 北大核心 2025年第10期2175-2185,共11页
Through employing zeolitic imidazolate framework-67(ZIF-67)templates,the straightforward hydrother-mal and electrodeposition methods were applied to synthesize FeOOH@CoMoO_(4)heterostructure attached to the sur-face o... Through employing zeolitic imidazolate framework-67(ZIF-67)templates,the straightforward hydrother-mal and electrodeposition methods were applied to synthesize FeOOH@CoMoO_(4)heterostructure attached to the sur-face of nickel foam(NF).The specific structure of the as-prepared FeOOH@CoMoO_(4)/NF-400s provided pronounced porosity and extensive surface area,enhancing rapid electron transport and exposing abundant active sites to improve catalytic reactions.Furthermore,the introduction of FeOOH,which induces electron transfer from FeOOH to CoMoO_(4),confirms their strong electronic interaction,thereby leading to an accelerated surface catalytic reaction.Consequently,the constructed FeOOH@CoMoO_(4)/NF-400s heterostructure demonstrated exceptional oxygen evolu-tion reaction(OER)activity,requiring an overpotential of 199 mV to deliver the current density of 10 mA·cm^(-2),cou-pled with the superior Tafel slope value of 49.56 mV·dec^(-1)and outstanding stability over 20 h under the current densities of both 10 and 100 mA·cm^(-2). 展开更多
关键词 template sacrifice approach zeolitic imidazolate framework-67 oxygen evolution reaction ELECTROCATALYSTS
在线阅读 下载PDF
High-performance Ni-Co-Mn electrocatalyst recovered from spent lithium-ion battery cathode materials for robust oxygen evolution in acid solution
6
作者 JIANG Liang-xing FAN Yao-jian +2 位作者 LIU Fang-yang ZHANG Zong-liang WANG Jun 《Journal of Central South University》 CSCD 2024年第12期4472-4482,共11页
Recovering valuable metals from spent lithium-ion batteries(LIBs)for high value-added application is beneficial for global energy cycling and environmental protection.In this work,we obtain the high-performance N-dope... Recovering valuable metals from spent lithium-ion batteries(LIBs)for high value-added application is beneficial for global energy cycling and environmental protection.In this work,we obtain the high-performance N-doped Ni-Co-Mn(N-NCM)electrocatalyst from waste LIBs,for robust oxygen evolution application.Lithium-rich solution and NCM oxides are effectively separated from ternary cathode materials by sulfation roasting and low-temperature water leaching approach,in which the recovery efficiency of Li metal reaches nearly 100%.By facile NH_(3)treatment,the incorporation of N into NCM significantly increases the ratio of low-valence state Co^(2+)and Mn^(2+),and the formed Mn-N bond benefits the surface catalytic kinetics.Meanwhile,the N doping induces lattice expansion of the NCM,triggering tensile stress to favor the adsorption of the reactant.Thus,the optimized N-NCM electrocatalyst exhibits the superior overpotentials of 256 and 453 mV to achieve the current density of 10 and 100 mA/cm^(2),respectively,with a low Tafel slope of 37.3 mV/dec.This work provides a fresh avenue for recycling spent LIBs in the future to achieve sustainable development. 展开更多
关键词 recovered Ni-Co-Mn oxides N doping oxygen evolution electrocatalyst spent ternary lithium-ion batteries
在线阅读 下载PDF
Effect of doping Bi on oxygen evolution potential and corrosion behavior of Pb-based anode in zinc electrowinning 被引量:5
7
作者 赖延清 衷水平 +4 位作者 蒋良兴 吕晓军 陈佩如 李劼 刘业翔 《Journal of Central South University》 SCIE EI CAS 2009年第2期236-241,共6页
A new anodic material of ternary Pb-0.8%Ag-(0-5.0%)Bi alloy for zinc electrowinning was obtained by doping Bi.The anodic oxygen evolution potential,corrosion rate,surface products after polarization,and microstructure... A new anodic material of ternary Pb-0.8%Ag-(0-5.0%)Bi alloy for zinc electrowinning was obtained by doping Bi.The anodic oxygen evolution potential,corrosion rate,surface products after polarization,and microstructures before and after polarization were studied and compared with those of Pb-0.8%Ag anode used in industry.The results show the anodic overpotential decreases with the increase of Bi content in the alloys.When the content of Bi is 1.0%(mass fraction),the anodic overpotential is 40-50 mV lower than that of Pb-0.8%Ag anode.While the corrosion rate decreases and then increases with the increase of Bi content.The Pb-0.8%Ag-0.1%Bi anode has the lowest corrosion rate(0.090 6 mg/(h·cm2).Doping Bi influences the structure of the anodic layer,but does not change the phase.The Pb-0.8%Ag-1.0%Bi anode layer is of a more fine-grained structure compared with Pb-0.8%Ag anode. 展开更多
关键词 Pb-Ag anode doping Bi zinc electrowinning oxygen evolution potential corrosion rate
在线阅读 下载PDF
In situ fabrication of hierarchical NiX@CNT:An efficient bifunctional electrocatalyst for water splitting
8
作者 ZHANG Bai-qing YIN Zhuo-xun +5 位作者 MA Xin-zhi ZHOU Yang LI Jin-long WANG Yu-ping WAN Li-juan MA Zhan-chun 《Journal of Central South University》 2025年第6期2114-2128,共15页
Developing efficient,durable,and precious metal-free electrocatalysts is currently a huge challenge.In this article,through a simple one-step high-temperature pyrolysis method,by incorporating various non-metallic ele... Developing efficient,durable,and precious metal-free electrocatalysts is currently a huge challenge.In this article,through a simple one-step high-temperature pyrolysis method,by incorporating various non-metallic element atoms,we prepared four different NiX(X=Cl_(2),(CH_(3)COO)_(2),(NO_(3))2,SO_(4))@CNT catalysts.Additionally,by adjusting the temperature,these four materials were expanded into twelve catalyst materials for comparative optimization of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)activity.Ultimately,Ni(NO_(3))2@CNT-900 typically exhibits superior OER and HER activity.In 1 mol/L KOH solution with a current density of 10 mA/cm^(2),the overpotentials of HER and OER of Ni(NO_(3))2@CNT-900 are only 145 mV and 300 mV,respectively.Furthermore,the Ni(NO_(3))2@CNT-900 shows excellent durability in both HER and OER. 展开更多
关键词 water splitting ELECTROCATALYSTS hydrogen evolution reaction(HER) oxygen evolution reaction(OER)
在线阅读 下载PDF
Hetero-interfaces coupling between FeS and Co_(3)S_(4) with enhanced electrocatalytic activity in water/seawater splitting
9
作者 ZHAO Zhan LI Jiao +1 位作者 HUANG Kelei MENG Xiangchao 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2024年第12期1865-1876,共12页
Heterojunction catalysts composed of transition metal sulfides exhibited excellent potentials in electrocatalytic water splitting.Herein,we have designed a FeS/Co_(3)S_(4) heterojunction catalyst for hydrogen evolutio... Heterojunction catalysts composed of transition metal sulfides exhibited excellent potentials in electrocatalytic water splitting.Herein,we have designed a FeS/Co_(3)S_(4) heterojunction catalyst for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in alkaline water/seawater solution.Three-dimensional nanoarrays were grown on nickel foam,and the successful synthesis of heterojunction endowed excellent activity to the catalyst.In alkaline water/seawater solution,the low overpotentials(at current density of 10 mA/cm^(2))of HER were 120.3 and 135.6 mV and the low overpotentials of OER were 212 and 232 mV,respectively.This work provided an effective method for highly-efficiently electrocatalytic splitting of water via fabrication of heterojunction. 展开更多
关键词 hydrogen evolution reaction oxygen evolution reaction HETEROJUNCTION FeS/Co_(3)S_(4)
在线阅读 下载PDF
Synergistic effect of heterogeneous single atoms and clusters for improved catalytic performance
10
作者 Long Liu Wenting Gao +5 位作者 Yiling Ma Kainan Mei Wenlong Wu Hongliang Li Zhirong Zhang Jie Zeng 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第6期34-40,I0010,共8页
Electrocatalytic water splitting provides an efficient method for the production of hydrogen.In electrocatalytic water splitting,the oxygen evolution reaction(OER)involves a kinetically sluggish four-electron transfer... Electrocatalytic water splitting provides an efficient method for the production of hydrogen.In electrocatalytic water splitting,the oxygen evolution reaction(OER)involves a kinetically sluggish four-electron transfer process,which limits the efficiency of electrocatalytic water splitting.Therefore,it is urgent to develop highly active OER catalysts to accelerate reaction kinetics.Coupling single atoms and clusters in one system is an innovative approach for developing efficient catalysts that can synergistically optimize the adsorption and configuration of intermediates and improve catalytic activity.However,research in this area is still scarce.Herein,we constructed a heterogeneous single-atom cluster system by anchoring Ir single atoms and Co clusters on the surface of Ni(OH)_(2)nanosheets.Ir single atoms and Co clusters synergistically improved the catalytic activity toward the OER.Specifically,Co_(n)Ir_(1)/Ni(OH)_(2)required an overpotential of 255 mV at a current density of 10 mA·cm^(−2),which was 60 mV and 67 mV lower than those of Co_(n)/Ni(OH)_(2)and Ir1/Ni(OH)_(2),respectively.The turnover frequency of Co_(n)Ir_(1)/Ni(OH)_(2)was 0.49 s^(−1),which was 4.9 times greater than that of Co_(n)/Ni(OH)_(2)at an overpotential of 300 mV. 展开更多
关键词 single-atom cluster catalysts synergistic effect oxygen evolution reaction
在线阅读 下载PDF
Preparation, characterization and photocatalytic behavior of WO_3-TiO_2/Nb_2O_5 catalysts 被引量:5
11
作者 童海霞 陈启元 +3 位作者 胡慧萍 尹周澜 李洁 周建良 《Journal of Central South University of Technology》 EI 2007年第6期788-792,共5页
TiO2/Nb2O5 photocatalyst loaded with WO3 (WO3-TiO2/Nb2O5) was prepared by a modified hydrolysis process, and characterized by X-ray diffractometry, transmission electron microscopy, Raman spectra and UV-Vis diffuse ... TiO2/Nb2O5 photocatalyst loaded with WO3 (WO3-TiO2/Nb2O5) was prepared by a modified hydrolysis process, and characterized by X-ray diffractometry, transmission electron microscopy, Raman spectra and UV-Vis diffuse refraction spectroscopy. The photocatalytic activity of WO3-TiO2/Nb2O5 was investigated by employing splitting of water for O2 evolution. The results indicate that WO3 loading can pronouncedly improve the photocatalytic activity of TiOjNb2O5 by using Fe^3+ as an electron acceptor under UV irradiation. The optimum molar fraction of the loaded WO3 is 2%, and the largest speed of O2 evolution for 2% WO3-TiO2/Nb2O5 catalyst is 151.8 μmol/(L·h). 展开更多
关键词 PHOTOCATALYSIS load oxygen evolution rutile TiO2 NB2O5 WO3
在线阅读 下载PDF
Fabrication of triangular Cu_(3)P nanorods on Cu nanosheets as electrocatalyst for boosted electrocatalytic water splitting 被引量:2
12
作者 DANG Rui XU Xiu-feng XIE Meng-meng 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第12期3870-3883,共14页
Non-precious electro catalysts with high-efficiency, cheapness and stablility are of great significance to replace noble metal electro catalysts in the hydrogen evolution reaction(HER) and oxygen evolution reaction(OE... Non-precious electro catalysts with high-efficiency, cheapness and stablility are of great significance to replace noble metal electro catalysts in the hydrogen evolution reaction(HER) and oxygen evolution reaction(OER). In this work, triangular Cu@CuO nanorods on Cu nanosheets were fabricated by a novel in-situ oxidation approach using Cu nanosheets as self-template and conductive nano-substrate in an aqueous solution of NaOH/H2O2, and then by lowtemperature phosphorization treatments. The experimental results show that the phosphating temperature has a significant effect on the morphology, composition and number of active sites of Cu@Cu_(3)P nanorods. The Cu@Cu_(3)P-280 electrode exhibits a good HER catalytic activity of achieving a current density of 10 mA/cm^(2) at 252 mV in acid electrolyte. After catalysis for 14 h, the current density can still reach 72% of the initial value. Moreover, the Cu@Cu_(3)P-280 electrode also shows an excellent OER catalytic activity in basic electrolyte, reaching a current density of 10 mA/cm^(2) at the overpotential value of 200 mV. After catalysis for 12 h, the current density remained more than 93% of the initial value. This work provides a theoretical basis for the directional design and preparation of sustainable, low-cost, bifunctional electrocatalytic materials. 展开更多
关键词 Cu@Cu_(3)P electrocatalysis oxygen evolution reaction hydrogen evolution reaction
在线阅读 下载PDF
二氧化钌电极的XPS研究
13
作者 崔成强 王水菊 周绍民 《厦门大学学报(自然科学版)》 CAS 1988年第1期76-80,共5页
XPS分析表明在RuO_2 在O(a),OH(a) H_2O(a),Ols529.5,531.0, 532.0 cV.RuO_2提出了Ru_2O_3氧化生成的RuO_4
关键词 KuO2 electrode XPS oxygen evolution.
在线阅读 下载PDF
Electronically Modulated FeNi Composite by CeO_(2)Porous Nanosheets for Water Splitting at Large Current Density
14
作者 Ming-Yu Ding Wen-Jie Jiang +3 位作者 Tian-Qi Yu Xiao-Yan Zhuo Xiao-Jing Qin Shi-Bin Yin 《电化学》 CAS 北大核心 2023年第5期3-11,共9页
Exploiting highly active and non-noble metal bifunctional catalysts at large current density is significant for the advancement of water electrolysis.In this work,CeO_(2)electronically structure modulated FeNi bimetal... Exploiting highly active and non-noble metal bifunctional catalysts at large current density is significant for the advancement of water electrolysis.In this work,CeO_(2)electronically structure modulated FeNi bimetallic composite porous nanosheets in-situ grown on nickel foam(NiFe_(2)O_(4)-Fe_(24)N_(10)-CeO_(2)/NF)is synthesized.Electrochemical experiments show that the NiFe_(2)O_(4)-Fe_(24)N_(10)-CeO_(2)/NF exhibited the outstanding activities toward both oxygen and hydrogen evolution reactions(OER and HER)(η1000=352 mV andη1000=429 mV,respectively).When assembled into a two-electrode system for overall water splitting(OWS),it only needs a low cell voltage of 1.81 V to drive 100 mA·cm^(-2).And it can operate stably at±500 mA·cm^(-2)over 30 h toward OER,HER and OWS without significant activity changes.The reason could be assigned to the electronic modulating of CeO_(2)on FeNi composite,which can boost the intrinsic activity and optimize the adsorption of reaction intermediates.Moreover,the porous nanosheets insitu grown on NF could enhance the contact of active site with electrolyte and facilitate the gas release,thus improving its chemical and mechanical stabilities.This study highlights a novel approach to design bifunctional non-noble metal catalysts for water splitting at large current density. 展开更多
关键词 FeNi composite Hydrogen evolution reaction oxygen evolution reaction Catalyst Water splitting
在线阅读 下载PDF
Series Reports from Professor Wei’s Group of Chongqing University:Advancements in Electrochemical Energy Conversions(2/4):Report 2:High-Performance Water Splitting Electrocatalysts
15
作者 Ling Zhang Wang-Yang Wu +4 位作者 Qiu-Yue Hu Shi-Dan Yang Li Li Rui-Jin Liao Zi-Dong Wei 《电化学(中英文)》 2025年第9期1-20,共20页
The unavailability of high-performance and cost-effective electrocatalysts has impeded the large-scale deployment of alkaline water electrolyzers.Professor Zidong Wei's group has focused on resolving critical chal... The unavailability of high-performance and cost-effective electrocatalysts has impeded the large-scale deployment of alkaline water electrolyzers.Professor Zidong Wei's group has focused on resolving critical challenges in industrial alkaline electrolysis,particularly elucidating hydrogen and oxygen evolution reaction(HER/OER)mechanisms while addressing the persistent activity-stability trade-off.This review summarizes their decade-long progress in developing advanced electrodes,analyzing the origins of sluggish alkaline HER kinetics and OER stability limitations.Professor Wei proposes a unifying"12345 Principle"as an optimization framework.For HER electrocatalysts,they have identified that metal/metal oxide interfaces create synergistic"chimney effect"and"local electric field enhancement effect",enhancing selective intermediate adsorption,interfacial water enrichment/reorientation,and mass transport under industrial high-polarization conditions.Regarding OER,innovative strategies,including dual-ligand synergistic modulation,lattice oxygen suppression,and self-repairing surface construction,are demonstrated to balance oxygen species adsorption,optimize spin states,and dynamically reinforce metal-oxygen bonds for concurrent activity-stability enhancement.The review concludes by addressing remaining challenges in long-term industrial durability and suggesting future research priorities. 展开更多
关键词 Alkaline water splitting Hydron evolution reaction oxygen evolution reaction Intrinsic activity Stability
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部