Super high molecular weight copolymers of AM/NaA/AMPS were prepared by oxidation–reduction[OR-P(AM/NaA/AMPS)]and controlled radical polymerization[CR-P(AM/NaA/AMPS)].The resulting copolymers were fully characterized,...Super high molecular weight copolymers of AM/NaA/AMPS were prepared by oxidation–reduction[OR-P(AM/NaA/AMPS)]and controlled radical polymerization[CR-P(AM/NaA/AMPS)].The resulting copolymers were fully characterized,and the reaction conditions for their preparation were optimized.OR-P(AM/NaA/AMPS),CR-P(AM/NaA/AMPS),and conventional partially hydrolyzed polyacrylamide(HPAM)in brine solution were comprehensively characterized by thermogravimetric analysis,scanning electron microscopy,atomic force microscopy,and dynamic light scattering.ORP(AM/NaA/AMPS)and CR-P(AM/NaA/AMPS)containing AMPS monomer showed better salt resistance,temperature tolerance,and viscosification property than the conventional HPAM polymer,making them more promising for enhanced oil recovery.Through comprehensive comparison and analysis,it was found that OR-P(AM/NaA/AMPS)was more conducive for high-temperature condition due to the existence of xanthone in OR-P(AM/NaA/AMPS).On the other hand,CR-P(AM/NaA/AMPS)was more suitable for high-mineral atmosphere,which could be attributed to its higher intrinsic viscosity.展开更多
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me...The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction.展开更多
Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles in...Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles incorporated on nitrogen-doped porous carbon (CuO@NC) catalyst for NO_(3)-RR.Part of Cu(Ⅱ) is reduced to Cu(Ⅰ) during the NO_(3)-RR process to construct Cu(Ⅰ)-Cu(Ⅱ) pairs,confirmed by in situ X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.Density functional theory (DFT) calculations indicated that the formation of Cu(Ⅰ) could provide a reaction path with smaller energy barrier for NO_(3)-RR,while Cu(Ⅱ) effectively suppressed the competition of hydrogen evolution reaction (HER).As a result,CuO@NC catalyst achieved a Faradaic efficiency of 84.2% at -0.49 V versus reversible hydrogen electrode (RHE),and a NH_(3)yield rate of 17.2 mg h^(-1)mg^(-1)cat.at -0.79 V vs.RHE,higher than the HaberBosch process (<3.4 g h^(-1)g^(-1)cat.).This work may open a new avenue for effective NO_(3)-RR by modulating oxidation states.展开更多
Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(...Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(2) due to its high energy value as estimated by market price per energy unit and wide application in chemical industry.Biomass is the most abundant renewable resource in the natural world.Coupling biomass oxidative conversion with CO_(2)RR driven by renewable electricity would well achieve carbon negativity.In this work,we comprehensively reviewed the current research progress on CO_(2)RR to produce HCOOH and coupled system for conversion of biomass and its derivatives to produce value-added products.Sn-and Bi-based electrocatalysts are discussed for CO_(2)RR with regards to the structure of the catalyst and reaction mechanisms.Electro-oxidation reactions of biomass derived sugars,alcohols,furan aldehydes and even polymeric components of lignocellulose were reviewed as alternatives to replace oxygen evolution reaction(OER)in the conventional electrolysis process.It was recommended that to further improve the efficiency of the coupled system,future work should be focused on the development of more efficient and stable catalysts,careful design of the electrolytic cells for improving the mass transfer and development of environment-friendly processes for recovering the formed formate and biomass oxidation products.展开更多
At room temperature,the conversion of greenhouse gases into valuable chemicals using metal-free catalysts for dry reforming of methane(DRM) is quite promising and challenging.Herein,we developed a novel covalent organ...At room temperature,the conversion of greenhouse gases into valuable chemicals using metal-free catalysts for dry reforming of methane(DRM) is quite promising and challenging.Herein,we developed a novel covalent organic porous polymer (TPE-COP) with rapid charge separation of the electron–hole pairs for DRM driven by visible light at room temperature,which can efficiently generate syngas (CO and H_(2)).Both electron donor (tris(4-aminophenyl)amine,TAPA) and acceptor (4,4',4'',4'''-((1 E,1'E,1''E,1'''E)-(ethene-1,1,2,2-tetrayltetrakis (benzene-4,1-diyl))tetrakis (ethene-2,1-diyl))tetrakis (1-(4-formylbenzyl)quinolin-1-ium),TPE-CHO) were existed in TPE-COP,in which the push–pull effect between them promoted the separation of photogenerated electron–hole,thus greatly improving the photocatalytic activity.Density functional theory (DFT) simulation results show that TPE-COP can form charge-separating species under light irradiation,leading to electrons accumulation in TPE-CHO unit and holes in TAPA,and thus efficiently initiating DRM.After 20 h illumination,the photocatalytic results show that the yields reach 1123.6 and 30.8μmol g^(-1)for CO and H_(2),respectively,which are significantly higher than those of TPE-CHO small molecules.This excellent result is mainly due to the increase of specific surface area,the enhancement of light absorption capacity,and the improvement of photoelectron-generating efficiency after the formation of COP.Overall,this work contributes to understanding the advantages of COP materials for photocatalysis and fundamentally pushes metal-free catalysts into the door of DRM field.展开更多
Engineering the morphology of nanomaterials and modifying their electronic structure are effective ways to improve their performance in electrocatalysis. Through combining the co-reduction of Pd2+ and Cu2+ precursors ...Engineering the morphology of nanomaterials and modifying their electronic structure are effective ways to improve their performance in electrocatalysis. Through combining the co-reduction of Pd2+ and Cu2+ precursors with a digestive ripening process in oleylamine, we report the synthesis of copper-palladium(Cu-Pd) alloy multicubes with rough surfaces. Benefiting from their alloy and unique rough-surfaced structure,which provides ample edge/corner and step atoms as well as the electronic coupling between Cu and Pd leading to the lower of d-band center, the rough-surfaced Cu-Pd alloy multicubes show much better electrocatalytic performance not only for formic acid oxidation but also for oxygen reduction in comparison with those of spherical Cu-Pd alloy nanoparticles and commercial Pd/C catalyst. In contrast, we confirm that the rough-surfaced Cu-Pd alloy multicubes only exhibit very low Faradaic efficiency(34.3%) for electrocatalytic conversion of carbon dioxide(CO2) to carbon monoxide(CO) due to the presence of strong competing hydrogen evolution reaction, which results in their very poor selectivity for the reduction of CO2 to CO. The findings in this study not only offer a promising strategy to produce highly effective electrocatalysts for direct formic acid fuel cells, but also enlighten the ideas to design efficient electrocatalysts for CO2 reduction.展开更多
The research on electrocatalysts with relatively lower price than Pt and excellent electrocatalytic performance for the cathode oxygen reduction reaction(ORR) and anode methanol oxidation reaction(MOR) is vital for th...The research on electrocatalysts with relatively lower price than Pt and excellent electrocatalytic performance for the cathode oxygen reduction reaction(ORR) and anode methanol oxidation reaction(MOR) is vital for the development of direct methanol fuel cells(DMFCs). In this work, we develop a cyanogel-reduction method to synthesize reduced graphene oxide(rGO) supported highly dispersed PdNi alloy nanocrystals(PdNi/rGO) with high alloying degree and tunable Pd/Ni ratio. The large specific surface area and the d-band center downshift of Pd result in excellent activity of Pd4 Ni1/rGO nanohybrids for the ORR. The modification of Pd electronic structure can facilitate the adsorption of CH3 OH on Pd surface and the highly oxophilic property of Ni can eliminate/mitigate the COadsintermediates poisoning, which make PdNi/r GO nanohybrids possess superior MOR activity. In addition, rGO improve the stability of PdNi alloy nanocrystals for the ORR and MOR. Due to high activity and stability for the ORR and MOR, PdNi/rGO nanohybrids are promising to be an available bifunctional electrocatalyst in DMFCs.展开更多
CO_(x)(x=1,2)and O_(2) chemistry play key roles in tackling global severe environmental challenges and energy issues.To date,the efficient selective electrocatalytic transformations of COx-carbon chemicals,and O_(2)-h...CO_(x)(x=1,2)and O_(2) chemistry play key roles in tackling global severe environmental challenges and energy issues.To date,the efficient selective electrocatalytic transformations of COx-carbon chemicals,and O_(2)-hydrogenated products are still huge challenges.Single-atom catalysts(SACs)as atomic-scale novel catalysts in which only isolated metal atoms are dispersed on supports shed new insights in overcome these obstacles in CO_(x) and O_(2) chemistry,including CO oxidation,CO_(2) reduction reaction(CO_(2)RR),oxygen reduction reaction(ORR),and oxygen evolution reaction(OER).In this review,the unique features and advanced synthesis strategies of SACs from a viewpoint of fundamental synthesis design are first highlighted to guide future strategy design for controllable SAC synthesis.Then,the to-date reported CO_(2)RR,CO oxidation,OER,and ORR mechanism are included and summarized.More importantly,the design principles and design strategies of improving the intrinsic activity,selectivity,and stability are extensively discussed and the engineering strategy is classified as neighbor coordination engineering,metal-atom engineering,and substrate engineering.Via the comprehensive review and summary of state-of-the-art SACs,the synthesis–structure–property–mechanism–design principle relation can be revealed to shed lights into the structural construction of SACs.Finally,we present an outlook on current challenges and future directions for SACs in CO_(x) and O_(2) chemistry.展开更多
Formate can be synthesized electrochemically by CO_(2) reduction reaction(CO_(2)RR)or formalde-hyde oxidation reaction(FOR).The CO_(2)RR approach suffers from kinetic-sluggish oxygen evolution reac-tion at the anode.T...Formate can be synthesized electrochemically by CO_(2) reduction reaction(CO_(2)RR)or formalde-hyde oxidation reaction(FOR).The CO_(2)RR approach suffers from kinetic-sluggish oxygen evolution reac-tion at the anode.To this end,an electrochemical sys-tem combining cathodic CO_(2)RR with anodic FOR was developed,which enables the formate electrosynthesis at ultra-low voltage.Cathodic CO_(2)RR employing the BiOCl electrode in H-cell exhibited formate Faradaic efficiency(FE)higher than 90% within a wide potential range from−0.48 to−1.32 V_(RHE).In flow cell,the current density of 100 mA cm^(−2) was achieved at−0.67 V_(RHE).The anodic FOR using the Cu_(2)O electrode displayed a low onset potential of−0.13 V_(RHE) and nearly 100%formate and H_(2) selectivity from 0.05 to 0.35 V_(RHE).The CO_(2)RR and FOR were constructed in a flow cell through membrane electrode assembly for the electrosynthesis of formate,where the CO_(2)RR//FOR delivered an enhanced current density of 100 mA cm^(−2) at 0.86 V.This work provides a promising pair-electrosynthesis of value-added chemicals with high FE and low energy consumption.展开更多
Studies have extensively addressed the development of electrocatalytic technologies for energy storage and conversion,fuel production,and environmental protection.Electrode processes such as different oxidation and re...Studies have extensively addressed the development of electrocatalytic technologies for energy storage and conversion,fuel production,and environmental protection.Electrode processes such as different oxidation and reduction reactions play a vital and significant role in these technologies.In this regard,efficient,inexpensive,and stable electrocatalysts capable can significantly promote electrochemical reactions.Unique features of metal–organic frameworks(MOFs)such as their high porosity,tunable structure,size,and pore shape,high surface area,and redox properties have introduced them as an ideal electrocatalyst candidate.This review is thus aimed at elucidating the role of MOF-based materials(pristine,derivatives and composites)as efficient electrocatalysts in energy and sensing-related oxidation and reduction reactions such as oxygen reduction reaction(ORR),hydrogen oxidation reaction(HOR),carbon dioxide reduction reaction(CO_(2)RR),urea oxidation reaction(UOR),alcohol oxidation reaction(AOR),nitrogen reduction reaction(NRR),and glucose oxidation reaction(GOR)in advanced energy and sensing devices.Also,the structure–property relationship of the electrocatalyst was elaborated for each electrocatalytic reaction.Finally,perspectives on the potential research topics for practical use of MOF-based electrocatalysts are addressed.The present review can improve the interest in MOF-based electrocatalysts to study different oxidation and reduction reactions in energy and sensing systems.展开更多
Lead(Pb)-free halide perovskites have recently attracted increasing attention as potential catalysts for CO_(2) photoreduction to CO due to their potential to capture solar energy and drive catalytic reaction.However,...Lead(Pb)-free halide perovskites have recently attracted increasing attention as potential catalysts for CO_(2) photoreduction to CO due to their potential to capture solar energy and drive catalytic reaction.However,issues of the poor charge transfer still remain one of the main obstacles limiting their performance due to the overwhelming radiative and nonradiative charge-carrier recombination losses.Herein,Pb-free Sb-alloyed all-inorganic quadruple perovskite Cs_(4)Mn(Bi_(1-x)Sb_(x))_(2)Cl_(12)(0≤x≤1)is synthesized as efficient photocatalyst.By Sb alloying,the undesired relaxation of photogenerated electrons from conduction band to emission centers of[MnCl6]^(4-)is greatly suppressed,resulting in a weakened PL emission and enhanced charge transfer for photocatalyst.The ensuing Cs_(4)Mn(Bi_(1-x)Sb_(x))_(2)Cl_(12) photocatalyst accomplishes efficient conversion of CO_(2)into CO,accompanied by a surprising production of H_(2)O_(2),a high valueadded product associated with water oxidation.By optimizing Sb^(3+) concentration,a high CO evolution rate of 35.1μmol g^(-1)h^(-1)is achieved,superior to most other Pb and Pb-free halide perovskites.Our findings provide new insights into the mixed-cation alloying strategies for improved photocatalytic performance of Pb-free perovskites and shed light on the rational design of robust band structure toward efficient energy transfer.展开更多
One hind leg(about 7% TBSA)of a rat was scalded and the changes of thereduction-oxidation state and protein degradation in the soleus muscle were observed inthe 72nd h after scalding both in vitro and in vivo.It was f...One hind leg(about 7% TBSA)of a rat was scalded and the changes of thereduction-oxidation state and protein degradation in the soleus muscle were observed inthe 72nd h after scalding both in vitro and in vivo.It was found that the lactate/pyruvate(L/P)and malate/pyruvate(M/P)ratios in the soleus muscle were significantly lower andthe protein degradation rate significantly higher in the scalded rats than those in the controland in the unscalded legs.After the addition of insulin to the medium,significant eleva-tion of L/P and M/P ratios and reduction of the protein degradation rate were observedin the soleus muscle.These findings suggest that there is a good correlation between thechanges of the reduction-oxidation and the protein degradation rate in the cytosol of thesoleus muscle after scalding in rats.展开更多
Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membr...Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR.展开更多
Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate ...Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate and retarded desorption of target products.Engineering the interface microenvironment of catalysts has been proposed as a strategy to exert a significant influence on reaction outcomes,yet it remains a significant challenge.In this study,amino alkylation was successfully integrated into the melem unit of polymeric carbon nitrides(PCN),which could efficiently drive the photocatalytic CO_(2) reduction.Experimental characterization and theoretical calculations revealed that the introduction of amino alkylation lowers the energy barrier for CO_(2) reduction into^(*)COOH intermediate,transforming the adsorption of^(*)COOH intermediate from the endothermic to an exothermic process.Notably,the as-prepared materials demonstrated outstanding performance in photocatalytic CO_(2) reduction,yielding CO_(2)at a rate of 152.8μmol h^(-1) with a high selectivity of 95.4%and a quantum efficiency of 6.6%.展开更多
Solid oxide electrolysis cell(SOEC) can electrochemically convert CO2 to CO at the gas-solid interface with a high current density and Faradaic efficiency, which has attracted increasing attentions in recent years.Exp...Solid oxide electrolysis cell(SOEC) can electrochemically convert CO2 to CO at the gas-solid interface with a high current density and Faradaic efficiency, which has attracted increasing attentions in recent years.Exploring efficient catalyst for electrochemical CO2 reduction reaction(CO2 RR) at the cathode is a grand challenge for the research and development of SOEC. Sr2Fe1.5Mo0.5O6-δ(SFM) is one kind of promising cathode materials for SOEC, but suffers from insufficient activity for CO2 RR. Herein, Gd0.2Ce0.8O1.9(GDC)nanoparticles were infiltrated onto the SFM surface to construct a composite GDC-SFM cathode and improve the CO2 RR performance in SOEC. The current density over the GDC infiltrated SFM cathode with a GDC loading of 12.8 wt% reaches 0.446 A cm-2 at 1.6 V and 800 °C, which is much higher than that over the SFM cathode(0.283 A cm-2). Temperature-programmed desorption of CO2 measurements suggest that the infiltration of GDC nanoparticles significantly increases the density of surface active sites and three phase boundaries(TPBs), which are beneficial for CO2 adsorption and subsequent conversion. Electrochemical impedance spectroscopy results indicate that the polarization resistance of 12.8 wt% GDCSFM cathode was obviously decreased from 0.46 to 0.30 cm^2 after the infiltration of GDC nanoparticles.展开更多
Dielectric barrier discharge (DBD) plasma was utilized to oxidize NO contained in the exhaust gas to NO2, ultimately improve the selective catalytic reduction of nitrogen oxides (NOx). In the one case, DBD was cre...Dielectric barrier discharge (DBD) plasma was utilized to oxidize NO contained in the exhaust gas to NO2, ultimately improve the selective catalytic reduction of nitrogen oxides (NOx). In the one case, DBD was created directly in the exhaust gas (direct application), and in the an other case, ozone produced by DBD was injected into the exhaust gas (indirect application). A comparative study between such direct and indirect applications of DBD plasma was made in terms of the NOx removal efficiency and the energy consumption. The NO2 content in the exhaust gas was changed by the voltage applied to the DBD device (for direct application) or by the amount of ozone added to the exhaust gas (for indirect application). In both cases, NO was easily oxidized to NO2, and the change in NO2 content largely affected the NOx removal performance of the catalytic reactor placed downstream, where both NO and NO2 were reduced to N2 in the presence of ammonia as the reducing agent. The experiments were primarily concerned with the effect of reaction temperature on the catalytic NOx reduction at various NO2 contents. The direct and indirect applications of DBD were found to remarkably improve the catalytic NOx reduction, especially at low temperatures.展开更多
We rationally designed a high performance denitration(De-NOx) catalyst based on a micrometer-sized spherical Mn–Ce–Fe–Ti(CP-SD)catalyst for selective catalytic reduction(SCR). This was prepared by a co-precipitatio...We rationally designed a high performance denitration(De-NOx) catalyst based on a micrometer-sized spherical Mn–Ce–Fe–Ti(CP-SD)catalyst for selective catalytic reduction(SCR). This was prepared by a co-precipitation and spray drying(CP-SD) method. The catalyst was systematically characterized, and its morphological structure and surface properties were identified. Compare with conventional Mn–Ce–Fe–Ti(CP) catalysts, the Mn–Ce–Fe–Ti(CP-SD) catalyst had superior surface-adsorbed oxygen leading to enhanced 'fast NH3-SCR' reaction. The asobtained Mn–Ce–Fe–Ti(CP-SD) catalyst offered excellent NO conversion and N2 selectivity of 100.0% and 84.8% at 250℃, respectively, with a gas hourly space velocity(GHSV) of 40,000 h-1. The porous micro-spherical structure provides a larger surface area and more active sites to adsorb and activate the reaction gases. In addition, the uniform distribution and strong interaction of manganese, iron, cerium, and titanium oxide species improved H2O and SO2 resistance. The results showed that the Mn–Ce–Fe–Ti(CP-SD) catalyst could be used prospectively as a denitration(De-NOx) catalyst.展开更多
Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The...Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The N doped material demonstrated enhanced electrocatalytic CO;reduction activity, showing high Faradaic efficiency(90%) for formate at -0.65 V vs. RHE with partial current density of 4 mA/cm;.The catalysis was contributed to increased electron negativity of N atom compared to O atom. Additionally, the N-doped catalyst demonstrates sulfur tolerance with retained formate selectivity. The analysis after electrolysis shows that the catalyst structure partially converts to metallic Sn, and thus the combined Sn/N-SnO;is the key for the active CO;catalysis.展开更多
In this paper, we report a simple and facile self-assembly method to successfully fabricate cationic metal porphyrin-MtTMPyP(Mt= Cobalt(Ⅱ), Manganese(Ⅲ), or Iron(Ⅲ); TMPyP = 5, 10, 15, 20-tetrakis(N-methylpyridiniu...In this paper, we report a simple and facile self-assembly method to successfully fabricate cationic metal porphyrin-MtTMPyP(Mt= Cobalt(Ⅱ), Manganese(Ⅲ), or Iron(Ⅲ); TMPyP = 5, 10, 15, 20-tetrakis(N-methylpyridinium-4-yl) porphyrin) intercalated into the layer of graphene oxide(GO) by the cooperative effects of electrostatic and π-π stacking interaction between positively charged metal porphyrin and negatively charged GO sheets. Followed by reduction with hydrazine vapor, a series of novel 2 D MtTMPyP/rGO_n were fabricated. The as-prepared 2 D hybrids were fully characterized and tested as non-noble metal catalysts for oxygen reduction reaction(ORR) in an alkaline medium. The MtTMPyP/rGO_n hybrids, especially CoTMPyP/rGO_5, demonstrated an improved electrocatalytic activity for ORR and a number of exchanged electrons close to 4-electron reaction, increased stability and excellent tolerance to methanol, showing a potential alternative catalyst for ORR in fuel cells and air batteries.展开更多
The main difficulty in the extensive commercial use of polymer electrolyte membrane fuel cells (PEMFCs) is the use of noble metals such as Pt-based electrocatalyst at the cathode, which is essential to ease the oxyg...The main difficulty in the extensive commercial use of polymer electrolyte membrane fuel cells (PEMFCs) is the use of noble metals such as Pt-based electrocatalyst at the cathode, which is essential to ease the oxygen reduction reaction (ORR) in fuel cells (FCs). To eliminate the high loading of Pt-based electrocatalysts to minimize the cost, extensive study has been carried out over the previous decades on the non-noble metal catalysts. Development in enhancing the ORR performance of FCs is mainly due to the doped carbon materials, Fe and Co-based electrocatalysts, these materials could be considered as probable substitutes for Pt-based catalysts. But the stability of these non-noble metal electrocatalysts is low and the durability of these metals remains unclear. The three basic reasons of instability are: (i) oxidative occurrence by H2O2, (ii) leakage of the metal site and (iii) protonation by probable anion adsorption of the active site. Whereas leakage of the metal site has been almost solved, more work is required to understand and avoid losses from oxidative attack and protonation. The ORR performance such as stability tests are usually run at low current densities and the lifetime is much shorter than desired need. Therefore, improvement in the ORR activity and stability afe the key issues of the non-noble metal electrocatalyst. Based on the consequences obtained in this area, numerous future research directions are projected and discussed in this paper. Hence, this review is focused on improvement of stability and durability of the non-noble metal electrocatalyst.展开更多
基金supported by the National Science and Technology Major Project(No.2016ZX05011-003)The Certificate of China Postdoctoral Science Foundation(No.2016M592241).
文摘Super high molecular weight copolymers of AM/NaA/AMPS were prepared by oxidation–reduction[OR-P(AM/NaA/AMPS)]and controlled radical polymerization[CR-P(AM/NaA/AMPS)].The resulting copolymers were fully characterized,and the reaction conditions for their preparation were optimized.OR-P(AM/NaA/AMPS),CR-P(AM/NaA/AMPS),and conventional partially hydrolyzed polyacrylamide(HPAM)in brine solution were comprehensively characterized by thermogravimetric analysis,scanning electron microscopy,atomic force microscopy,and dynamic light scattering.ORP(AM/NaA/AMPS)and CR-P(AM/NaA/AMPS)containing AMPS monomer showed better salt resistance,temperature tolerance,and viscosification property than the conventional HPAM polymer,making them more promising for enhanced oil recovery.Through comprehensive comparison and analysis,it was found that OR-P(AM/NaA/AMPS)was more conducive for high-temperature condition due to the existence of xanthone in OR-P(AM/NaA/AMPS).On the other hand,CR-P(AM/NaA/AMPS)was more suitable for high-mineral atmosphere,which could be attributed to its higher intrinsic viscosity.
基金funded by the National Natural Science Foundation of China,China (Nos.52272303 and 52073212)the General Program of Municipal Natural Science Foundation of Tianjin,China (Nos.17JCYBJC22700 and 17JCYBJC17000)the State Scholarship Fund of China Scholarship Council,China (Nos.201709345012 and 201706255009)。
文摘The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction.
基金National Natural Science Foundation of China (52371228, 52402045)fund of Key Laboratory of Advanced Materials of Ministry of Education(Advmat-2414)。
文摘Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles incorporated on nitrogen-doped porous carbon (CuO@NC) catalyst for NO_(3)-RR.Part of Cu(Ⅱ) is reduced to Cu(Ⅰ) during the NO_(3)-RR process to construct Cu(Ⅰ)-Cu(Ⅱ) pairs,confirmed by in situ X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.Density functional theory (DFT) calculations indicated that the formation of Cu(Ⅰ) could provide a reaction path with smaller energy barrier for NO_(3)-RR,while Cu(Ⅱ) effectively suppressed the competition of hydrogen evolution reaction (HER).As a result,CuO@NC catalyst achieved a Faradaic efficiency of 84.2% at -0.49 V versus reversible hydrogen electrode (RHE),and a NH_(3)yield rate of 17.2 mg h^(-1)mg^(-1)cat.at -0.79 V vs.RHE,higher than the HaberBosch process (<3.4 g h^(-1)g^(-1)cat.).This work may open a new avenue for effective NO_(3)-RR by modulating oxidation states.
基金supported by the National Key R&D Program of China(2022YFA2105900)the National Natural Science Foundation of China(No.22178197)。
文摘Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(2) due to its high energy value as estimated by market price per energy unit and wide application in chemical industry.Biomass is the most abundant renewable resource in the natural world.Coupling biomass oxidative conversion with CO_(2)RR driven by renewable electricity would well achieve carbon negativity.In this work,we comprehensively reviewed the current research progress on CO_(2)RR to produce HCOOH and coupled system for conversion of biomass and its derivatives to produce value-added products.Sn-and Bi-based electrocatalysts are discussed for CO_(2)RR with regards to the structure of the catalyst and reaction mechanisms.Electro-oxidation reactions of biomass derived sugars,alcohols,furan aldehydes and even polymeric components of lignocellulose were reviewed as alternatives to replace oxygen evolution reaction(OER)in the conventional electrolysis process.It was recommended that to further improve the efficiency of the coupled system,future work should be focused on the development of more efficient and stable catalysts,careful design of the electrolytic cells for improving the mass transfer and development of environment-friendly processes for recovering the formed formate and biomass oxidation products.
基金supported by National Natural Science Foundation of China (Nos. 22274039 and 22178089)Hunan Provincial Innovation Foundation for Postgraduate (No.CX20220392)。
文摘At room temperature,the conversion of greenhouse gases into valuable chemicals using metal-free catalysts for dry reforming of methane(DRM) is quite promising and challenging.Herein,we developed a novel covalent organic porous polymer (TPE-COP) with rapid charge separation of the electron–hole pairs for DRM driven by visible light at room temperature,which can efficiently generate syngas (CO and H_(2)).Both electron donor (tris(4-aminophenyl)amine,TAPA) and acceptor (4,4',4'',4'''-((1 E,1'E,1''E,1'''E)-(ethene-1,1,2,2-tetrayltetrakis (benzene-4,1-diyl))tetrakis (ethene-2,1-diyl))tetrakis (1-(4-formylbenzyl)quinolin-1-ium),TPE-CHO) were existed in TPE-COP,in which the push–pull effect between them promoted the separation of photogenerated electron–hole,thus greatly improving the photocatalytic activity.Density functional theory (DFT) simulation results show that TPE-COP can form charge-separating species under light irradiation,leading to electrons accumulation in TPE-CHO unit and holes in TAPA,and thus efficiently initiating DRM.After 20 h illumination,the photocatalytic results show that the yields reach 1123.6 and 30.8μmol g^(-1)for CO and H_(2),respectively,which are significantly higher than those of TPE-CHO small molecules.This excellent result is mainly due to the increase of specific surface area,the enhancement of light absorption capacity,and the improvement of photoelectron-generating efficiency after the formation of COP.Overall,this work contributes to understanding the advantages of COP materials for photocatalysis and fundamentally pushes metal-free catalysts into the door of DRM field.
基金Financial supports from the National Natural Science Foundation of China (Grant No.: 21506225, 21573240 and 21706265)Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences (Grant No.: COM2015A001 and MPCS-2017-A-02)
文摘Engineering the morphology of nanomaterials and modifying their electronic structure are effective ways to improve their performance in electrocatalysis. Through combining the co-reduction of Pd2+ and Cu2+ precursors with a digestive ripening process in oleylamine, we report the synthesis of copper-palladium(Cu-Pd) alloy multicubes with rough surfaces. Benefiting from their alloy and unique rough-surfaced structure,which provides ample edge/corner and step atoms as well as the electronic coupling between Cu and Pd leading to the lower of d-band center, the rough-surfaced Cu-Pd alloy multicubes show much better electrocatalytic performance not only for formic acid oxidation but also for oxygen reduction in comparison with those of spherical Cu-Pd alloy nanoparticles and commercial Pd/C catalyst. In contrast, we confirm that the rough-surfaced Cu-Pd alloy multicubes only exhibit very low Faradaic efficiency(34.3%) for electrocatalytic conversion of carbon dioxide(CO2) to carbon monoxide(CO) due to the presence of strong competing hydrogen evolution reaction, which results in their very poor selectivity for the reduction of CO2 to CO. The findings in this study not only offer a promising strategy to produce highly effective electrocatalysts for direct formic acid fuel cells, but also enlighten the ideas to design efficient electrocatalysts for CO2 reduction.
基金the National Natural Science Foundation of China (21473111)the Fundamental Research Funds for the Central Universities (GK201701007)
文摘The research on electrocatalysts with relatively lower price than Pt and excellent electrocatalytic performance for the cathode oxygen reduction reaction(ORR) and anode methanol oxidation reaction(MOR) is vital for the development of direct methanol fuel cells(DMFCs). In this work, we develop a cyanogel-reduction method to synthesize reduced graphene oxide(rGO) supported highly dispersed PdNi alloy nanocrystals(PdNi/rGO) with high alloying degree and tunable Pd/Ni ratio. The large specific surface area and the d-band center downshift of Pd result in excellent activity of Pd4 Ni1/rGO nanohybrids for the ORR. The modification of Pd electronic structure can facilitate the adsorption of CH3 OH on Pd surface and the highly oxophilic property of Ni can eliminate/mitigate the COadsintermediates poisoning, which make PdNi/r GO nanohybrids possess superior MOR activity. In addition, rGO improve the stability of PdNi alloy nanocrystals for the ORR and MOR. Due to high activity and stability for the ORR and MOR, PdNi/rGO nanohybrids are promising to be an available bifunctional electrocatalyst in DMFCs.
基金supported by the National Natural Science Foundation of China(No.51632007)the National Science and Technology Major Project(2017-VI-0007-0077)。
文摘CO_(x)(x=1,2)and O_(2) chemistry play key roles in tackling global severe environmental challenges and energy issues.To date,the efficient selective electrocatalytic transformations of COx-carbon chemicals,and O_(2)-hydrogenated products are still huge challenges.Single-atom catalysts(SACs)as atomic-scale novel catalysts in which only isolated metal atoms are dispersed on supports shed new insights in overcome these obstacles in CO_(x) and O_(2) chemistry,including CO oxidation,CO_(2) reduction reaction(CO_(2)RR),oxygen reduction reaction(ORR),and oxygen evolution reaction(OER).In this review,the unique features and advanced synthesis strategies of SACs from a viewpoint of fundamental synthesis design are first highlighted to guide future strategy design for controllable SAC synthesis.Then,the to-date reported CO_(2)RR,CO oxidation,OER,and ORR mechanism are included and summarized.More importantly,the design principles and design strategies of improving the intrinsic activity,selectivity,and stability are extensively discussed and the engineering strategy is classified as neighbor coordination engineering,metal-atom engineering,and substrate engineering.Via the comprehensive review and summary of state-of-the-art SACs,the synthesis–structure–property–mechanism–design principle relation can be revealed to shed lights into the structural construction of SACs.Finally,we present an outlook on current challenges and future directions for SACs in CO_(x) and O_(2) chemistry.
基金This work was supported by the National Key R&D Program of China(2020YFA0710000)the National Natural Science Foundation of China(22122901,21902047)+1 种基金the Provincial Natural Science Foundation of Hunan(2020JJ5045,2021JJ20024,2021RC3054)the Shenzhen Science and Technology Program(JCYJ20210324140610028).
文摘Formate can be synthesized electrochemically by CO_(2) reduction reaction(CO_(2)RR)or formalde-hyde oxidation reaction(FOR).The CO_(2)RR approach suffers from kinetic-sluggish oxygen evolution reac-tion at the anode.To this end,an electrochemical sys-tem combining cathodic CO_(2)RR with anodic FOR was developed,which enables the formate electrosynthesis at ultra-low voltage.Cathodic CO_(2)RR employing the BiOCl electrode in H-cell exhibited formate Faradaic efficiency(FE)higher than 90% within a wide potential range from−0.48 to−1.32 V_(RHE).In flow cell,the current density of 100 mA cm^(−2) was achieved at−0.67 V_(RHE).The anodic FOR using the Cu_(2)O electrode displayed a low onset potential of−0.13 V_(RHE) and nearly 100%formate and H_(2) selectivity from 0.05 to 0.35 V_(RHE).The CO_(2)RR and FOR were constructed in a flow cell through membrane electrode assembly for the electrosynthesis of formate,where the CO_(2)RR//FOR delivered an enhanced current density of 100 mA cm^(−2) at 0.86 V.This work provides a promising pair-electrosynthesis of value-added chemicals with high FE and low energy consumption.
文摘Studies have extensively addressed the development of electrocatalytic technologies for energy storage and conversion,fuel production,and environmental protection.Electrode processes such as different oxidation and reduction reactions play a vital and significant role in these technologies.In this regard,efficient,inexpensive,and stable electrocatalysts capable can significantly promote electrochemical reactions.Unique features of metal–organic frameworks(MOFs)such as their high porosity,tunable structure,size,and pore shape,high surface area,and redox properties have introduced them as an ideal electrocatalyst candidate.This review is thus aimed at elucidating the role of MOF-based materials(pristine,derivatives and composites)as efficient electrocatalysts in energy and sensing-related oxidation and reduction reactions such as oxygen reduction reaction(ORR),hydrogen oxidation reaction(HOR),carbon dioxide reduction reaction(CO_(2)RR),urea oxidation reaction(UOR),alcohol oxidation reaction(AOR),nitrogen reduction reaction(NRR),and glucose oxidation reaction(GOR)in advanced energy and sensing devices.Also,the structure–property relationship of the electrocatalyst was elaborated for each electrocatalytic reaction.Finally,perspectives on the potential research topics for practical use of MOF-based electrocatalysts are addressed.The present review can improve the interest in MOF-based electrocatalysts to study different oxidation and reduction reactions in energy and sensing systems.
基金financially supported by the National Natural Science Foundation of China(22179072,22002070)the Natural Science Foundation of Shandong Province(ZR2021QF006)+3 种基金the Outstanding Youth Science Foundation of Shandong Province(Overseas)(2022HWYQ-006)the Natural Science Foundation of Shandong Province(ZR2020QB059)the Fundamental Research Center of Artificial Photosynthesis(FReCAP)financially supported by the National Natural Science Foundation of China(22088102)the China Postdoctoral Science Foundation(No.2022M711898)。
文摘Lead(Pb)-free halide perovskites have recently attracted increasing attention as potential catalysts for CO_(2) photoreduction to CO due to their potential to capture solar energy and drive catalytic reaction.However,issues of the poor charge transfer still remain one of the main obstacles limiting their performance due to the overwhelming radiative and nonradiative charge-carrier recombination losses.Herein,Pb-free Sb-alloyed all-inorganic quadruple perovskite Cs_(4)Mn(Bi_(1-x)Sb_(x))_(2)Cl_(12)(0≤x≤1)is synthesized as efficient photocatalyst.By Sb alloying,the undesired relaxation of photogenerated electrons from conduction band to emission centers of[MnCl6]^(4-)is greatly suppressed,resulting in a weakened PL emission and enhanced charge transfer for photocatalyst.The ensuing Cs_(4)Mn(Bi_(1-x)Sb_(x))_(2)Cl_(12) photocatalyst accomplishes efficient conversion of CO_(2)into CO,accompanied by a surprising production of H_(2)O_(2),a high valueadded product associated with water oxidation.By optimizing Sb^(3+) concentration,a high CO evolution rate of 35.1μmol g^(-1)h^(-1)is achieved,superior to most other Pb and Pb-free halide perovskites.Our findings provide new insights into the mixed-cation alloying strategies for improved photocatalytic performance of Pb-free perovskites and shed light on the rational design of robust band structure toward efficient energy transfer.
文摘One hind leg(about 7% TBSA)of a rat was scalded and the changes of thereduction-oxidation state and protein degradation in the soleus muscle were observed inthe 72nd h after scalding both in vitro and in vivo.It was found that the lactate/pyruvate(L/P)and malate/pyruvate(M/P)ratios in the soleus muscle were significantly lower andthe protein degradation rate significantly higher in the scalded rats than those in the controland in the unscalded legs.After the addition of insulin to the medium,significant eleva-tion of L/P and M/P ratios and reduction of the protein degradation rate were observedin the soleus muscle.These findings suggest that there is a good correlation between thechanges of the reduction-oxidation and the protein degradation rate in the cytosol of thesoleus muscle after scalding in rats.
基金finically supported by the National Natural Science Foundation of China(22075055)the Guangxi Science and Technology Project(AB16380030)。
文摘Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR.
基金financially supported by the National Natural Science Foundation of China(22309032)the Guangdong Basic and Applied Basic Research Foundation(2022A1515011737)+1 种基金the Science and Technology Program of Guangzhou(2023A04J1395)the GDAS’Project of Science and Technology Development(2021GDASYL-20210102010)。
文摘Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate and retarded desorption of target products.Engineering the interface microenvironment of catalysts has been proposed as a strategy to exert a significant influence on reaction outcomes,yet it remains a significant challenge.In this study,amino alkylation was successfully integrated into the melem unit of polymeric carbon nitrides(PCN),which could efficiently drive the photocatalytic CO_(2) reduction.Experimental characterization and theoretical calculations revealed that the introduction of amino alkylation lowers the energy barrier for CO_(2) reduction into^(*)COOH intermediate,transforming the adsorption of^(*)COOH intermediate from the endothermic to an exothermic process.Notably,the as-prepared materials demonstrated outstanding performance in photocatalytic CO_(2) reduction,yielding CO_(2)at a rate of 152.8μmol h^(-1) with a high selectivity of 95.4%and a quantum efficiency of 6.6%.
基金financial support from the Ministry of Science and Technology of China(Grant no.2017YFA0700102)the National Natural Science Foundation of China(Grants nos.21573222,91545202 and 21703237)+3 种基金Dalian Institute of Chemical Physics(Grant no.DICP DMTO201702)Dalian Outstanding Young Scientist Foundation(Grant no.2017RJ03)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant no.XDB17020200)the financial support from CAS Youth Innovation Promotion(Grant no.2015145)
文摘Solid oxide electrolysis cell(SOEC) can electrochemically convert CO2 to CO at the gas-solid interface with a high current density and Faradaic efficiency, which has attracted increasing attentions in recent years.Exploring efficient catalyst for electrochemical CO2 reduction reaction(CO2 RR) at the cathode is a grand challenge for the research and development of SOEC. Sr2Fe1.5Mo0.5O6-δ(SFM) is one kind of promising cathode materials for SOEC, but suffers from insufficient activity for CO2 RR. Herein, Gd0.2Ce0.8O1.9(GDC)nanoparticles were infiltrated onto the SFM surface to construct a composite GDC-SFM cathode and improve the CO2 RR performance in SOEC. The current density over the GDC infiltrated SFM cathode with a GDC loading of 12.8 wt% reaches 0.446 A cm-2 at 1.6 V and 800 °C, which is much higher than that over the SFM cathode(0.283 A cm-2). Temperature-programmed desorption of CO2 measurements suggest that the infiltration of GDC nanoparticles significantly increases the density of surface active sites and three phase boundaries(TPBs), which are beneficial for CO2 adsorption and subsequent conversion. Electrochemical impedance spectroscopy results indicate that the polarization resistance of 12.8 wt% GDCSFM cathode was obviously decreased from 0.46 to 0.30 cm^2 after the infiltration of GDC nanoparticles.
文摘Dielectric barrier discharge (DBD) plasma was utilized to oxidize NO contained in the exhaust gas to NO2, ultimately improve the selective catalytic reduction of nitrogen oxides (NOx). In the one case, DBD was created directly in the exhaust gas (direct application), and in the an other case, ozone produced by DBD was injected into the exhaust gas (indirect application). A comparative study between such direct and indirect applications of DBD plasma was made in terms of the NOx removal efficiency and the energy consumption. The NO2 content in the exhaust gas was changed by the voltage applied to the DBD device (for direct application) or by the amount of ozone added to the exhaust gas (for indirect application). In both cases, NO was easily oxidized to NO2, and the change in NO2 content largely affected the NOx removal performance of the catalytic reactor placed downstream, where both NO and NO2 were reduced to N2 in the presence of ammonia as the reducing agent. The experiments were primarily concerned with the effect of reaction temperature on the catalytic NOx reduction at various NO2 contents. The direct and indirect applications of DBD were found to remarkably improve the catalytic NOx reduction, especially at low temperatures.
基金supported by Major Scientific and Technological Project of Bingtuan (No.2018AA002)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R46)
文摘We rationally designed a high performance denitration(De-NOx) catalyst based on a micrometer-sized spherical Mn–Ce–Fe–Ti(CP-SD)catalyst for selective catalytic reduction(SCR). This was prepared by a co-precipitation and spray drying(CP-SD) method. The catalyst was systematically characterized, and its morphological structure and surface properties were identified. Compare with conventional Mn–Ce–Fe–Ti(CP) catalysts, the Mn–Ce–Fe–Ti(CP-SD) catalyst had superior surface-adsorbed oxygen leading to enhanced 'fast NH3-SCR' reaction. The asobtained Mn–Ce–Fe–Ti(CP-SD) catalyst offered excellent NO conversion and N2 selectivity of 100.0% and 84.8% at 250℃, respectively, with a gas hourly space velocity(GHSV) of 40,000 h-1. The porous micro-spherical structure provides a larger surface area and more active sites to adsorb and activate the reaction gases. In addition, the uniform distribution and strong interaction of manganese, iron, cerium, and titanium oxide species improved H2O and SO2 resistance. The results showed that the Mn–Ce–Fe–Ti(CP-SD) catalyst could be used prospectively as a denitration(De-NOx) catalyst.
基金financially supported by Key Research Program of the Chinese Academy of Sciences (ZDRW-ZS-2016-3)the National Key Research and Development Program of China (2016YFB0600901)the Instrument Developing Project of the Chinese Academy of Sciences
文摘Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The N doped material demonstrated enhanced electrocatalytic CO;reduction activity, showing high Faradaic efficiency(90%) for formate at -0.65 V vs. RHE with partial current density of 4 mA/cm;.The catalysis was contributed to increased electron negativity of N atom compared to O atom. Additionally, the N-doped catalyst demonstrates sulfur tolerance with retained formate selectivity. The analysis after electrolysis shows that the catalyst structure partially converts to metallic Sn, and thus the combined Sn/N-SnO;is the key for the active CO;catalysis.
基金supported by Natural Science Fund of Jiangsu Province (BK20141247, BK20140447)Exceptional Talent Project in Jiangsu Province (2015-XCL-035)+3 种基金University Science Research Project of Jiangsu Province (13KJB430005, 11KJA430008)funded by the Priority Academic Program development of Jiangsu Higher Education InstitutionsJiangsu Province universities' "blue and green blue project"financial support from the ARC (CE140100012, FT130100380, and DP170102267)
文摘In this paper, we report a simple and facile self-assembly method to successfully fabricate cationic metal porphyrin-MtTMPyP(Mt= Cobalt(Ⅱ), Manganese(Ⅲ), or Iron(Ⅲ); TMPyP = 5, 10, 15, 20-tetrakis(N-methylpyridinium-4-yl) porphyrin) intercalated into the layer of graphene oxide(GO) by the cooperative effects of electrostatic and π-π stacking interaction between positively charged metal porphyrin and negatively charged GO sheets. Followed by reduction with hydrazine vapor, a series of novel 2 D MtTMPyP/rGO_n were fabricated. The as-prepared 2 D hybrids were fully characterized and tested as non-noble metal catalysts for oxygen reduction reaction(ORR) in an alkaline medium. The MtTMPyP/rGO_n hybrids, especially CoTMPyP/rGO_5, demonstrated an improved electrocatalytic activity for ORR and a number of exchanged electrons close to 4-electron reaction, increased stability and excellent tolerance to methanol, showing a potential alternative catalyst for ORR in fuel cells and air batteries.
基金supported by the National Natural Science Foundation of China(21306119)the Key Research and Development Projects in Sichuan Province(2017GZ0397,2017CC0017)+1 种基金the Science and Technology Project of Chengdu(2015-HM01-00531-SF)the Outstanding Young Scientist Foundation of Sichuan University(2013SCU04A23)
文摘The main difficulty in the extensive commercial use of polymer electrolyte membrane fuel cells (PEMFCs) is the use of noble metals such as Pt-based electrocatalyst at the cathode, which is essential to ease the oxygen reduction reaction (ORR) in fuel cells (FCs). To eliminate the high loading of Pt-based electrocatalysts to minimize the cost, extensive study has been carried out over the previous decades on the non-noble metal catalysts. Development in enhancing the ORR performance of FCs is mainly due to the doped carbon materials, Fe and Co-based electrocatalysts, these materials could be considered as probable substitutes for Pt-based catalysts. But the stability of these non-noble metal electrocatalysts is low and the durability of these metals remains unclear. The three basic reasons of instability are: (i) oxidative occurrence by H2O2, (ii) leakage of the metal site and (iii) protonation by probable anion adsorption of the active site. Whereas leakage of the metal site has been almost solved, more work is required to understand and avoid losses from oxidative attack and protonation. The ORR performance such as stability tests are usually run at low current densities and the lifetime is much shorter than desired need. Therefore, improvement in the ORR activity and stability afe the key issues of the non-noble metal electrocatalyst. Based on the consequences obtained in this area, numerous future research directions are projected and discussed in this paper. Hence, this review is focused on improvement of stability and durability of the non-noble metal electrocatalyst.