介绍正交信号修正法的基本思想并详细推导该算法的实现步骤,将一种改进后的正交信号修正法(orthogonal signal correction,OSC)与偏最小二乘法(partial least square method,PLS)相结合,对原始数据通过OSC消除正交分量,利用PLS建立中长...介绍正交信号修正法的基本思想并详细推导该算法的实现步骤,将一种改进后的正交信号修正法(orthogonal signal correction,OSC)与偏最小二乘法(partial least square method,PLS)相结合,对原始数据通过OSC消除正交分量,利用PLS建立中长期负荷预测模型。该方法能有效地去除自变量系统中与因变量无关的正交数据信息,增强自变量、因变量之间的相关性,在有限的成分中提高成分解释能力。通过算例将PLS与OSC-PLS进行比较分析,结果表明,运用OSC-PLS进行中长期负荷预测,尽管预测模型提取的成分个数变少了,但模型成分的解释性却大幅度增强,预测精度明显提高,具有较强的实用性。展开更多
生鲜牛肉的含水率对其牛肉的加工、储藏、贸易与食用质量有重要影响,为了提高牛肉的经济价值和食用品质,需要研究牛肉含水率的无损检测技术。以取自不同超市的内蒙小黄牛和鲁西黄牛背最长肌为研究对象,有效样本86个,其中,75%的样本作为...生鲜牛肉的含水率对其牛肉的加工、储藏、贸易与食用质量有重要影响,为了提高牛肉的经济价值和食用品质,需要研究牛肉含水率的无损检测技术。以取自不同超市的内蒙小黄牛和鲁西黄牛背最长肌为研究对象,有效样本86个,其中,75%的样本作为校正集,25%的样本作为验证集。采集牛肉新鲜切口处400~1170nm波长范围内的漫反射光谱,用国标方法测定牛肉含水率。经过多元散射校正(multiplicative scatter correction,MSC)、变量标准化(standard normalized variate,SNV)和直接正交信号校正(direct orthogonal signal correction,DOSC)等方法预处理,在400~1170nm范围内分别建立多元线性回归(multiple linear regression,MLR)模型、主成分回归(principal component Regression,PCR)模型和偏最小二乘回归(partial least squares regression,PLSR)模型。结果表明使用MSC预处理方法建立的模型预测效果最佳,其中用PLSR建模结果最好,校正集的相关系数和校正标准差分别是0.92和0.0069,验证集的相关系数和验证标准差分别是0.92和0.0047,外部验证的相关系数和验证标准差分别是0.85和0.0054。结果表明,可见/近红外光谱结合MSC预处理方法建立的PLSR模型,可以对牛肉含水率进行准确的快速无损评价,为生鲜牛肉含水率快速无损检测技术的应用提供理论参考。展开更多
文摘介绍正交信号修正法的基本思想并详细推导该算法的实现步骤,将一种改进后的正交信号修正法(orthogonal signal correction,OSC)与偏最小二乘法(partial least square method,PLS)相结合,对原始数据通过OSC消除正交分量,利用PLS建立中长期负荷预测模型。该方法能有效地去除自变量系统中与因变量无关的正交数据信息,增强自变量、因变量之间的相关性,在有限的成分中提高成分解释能力。通过算例将PLS与OSC-PLS进行比较分析,结果表明,运用OSC-PLS进行中长期负荷预测,尽管预测模型提取的成分个数变少了,但模型成分的解释性却大幅度增强,预测精度明显提高,具有较强的实用性。
文摘生鲜牛肉的含水率对其牛肉的加工、储藏、贸易与食用质量有重要影响,为了提高牛肉的经济价值和食用品质,需要研究牛肉含水率的无损检测技术。以取自不同超市的内蒙小黄牛和鲁西黄牛背最长肌为研究对象,有效样本86个,其中,75%的样本作为校正集,25%的样本作为验证集。采集牛肉新鲜切口处400~1170nm波长范围内的漫反射光谱,用国标方法测定牛肉含水率。经过多元散射校正(multiplicative scatter correction,MSC)、变量标准化(standard normalized variate,SNV)和直接正交信号校正(direct orthogonal signal correction,DOSC)等方法预处理,在400~1170nm范围内分别建立多元线性回归(multiple linear regression,MLR)模型、主成分回归(principal component Regression,PCR)模型和偏最小二乘回归(partial least squares regression,PLSR)模型。结果表明使用MSC预处理方法建立的模型预测效果最佳,其中用PLSR建模结果最好,校正集的相关系数和校正标准差分别是0.92和0.0069,验证集的相关系数和验证标准差分别是0.92和0.0047,外部验证的相关系数和验证标准差分别是0.85和0.0054。结果表明,可见/近红外光谱结合MSC预处理方法建立的PLSR模型,可以对牛肉含水率进行准确的快速无损评价,为生鲜牛肉含水率快速无损检测技术的应用提供理论参考。