Organophosphorus pesticides(OPPs)in foods pose a serious threat to human health,motivating the development of novel analytical methods for their rapid detection and quantification.A magnetic covalent organic framework...Organophosphorus pesticides(OPPs)in foods pose a serious threat to human health,motivating the development of novel analytical methods for their rapid detection and quantification.A magnetic covalent organic framework(M-COF)adsorbent for the magnetic solid-phase extraction(MSPE)of OPPs from foods was reported.M-COF was synthesized by the Schiff base condensation reaction of 1,3,5-tris(4-aminophenyl)benzene and 4,4-biphenyldicarboxaldehyde on the surface of amino-functionalized magnetic nanoparticles.Density functional theory(DFT)calculations showed that adsorption of OPPs onto the surface of M-COF involved hydrophobic effects,van der Waals interactions,π-πinteractions,halogen-N bonding,and hydrogen bonding.Combined with gas chromatography-mass spectrometry(GC-MS)technology,the MSPE method features low limits of detection for OPPs(0.002-0.015μg/L),good reproducibility(1.45%-6.14%),wide linear detection range(0.01-1μg/L,R≥0.9935),and satisfactory recoveries(87.3%-110.4%).The method was successfully applied for the trace analysis of OPPs in spiked fruit juices.展开更多
Aptamers as a kind of biological recognition element have shown great potential in monitoring and the rapid quantification of organophosphorus pesticides(OPPs). However, molecules of OPPs are structurally similar and ...Aptamers as a kind of biological recognition element have shown great potential in monitoring and the rapid quantification of organophosphorus pesticides(OPPs). However, molecules of OPPs are structurally similar and original aptamers selected by systematic evolution of ligands by exponential enrichment are usually long-chain bases, which hamper the further application under OPPs-aptamer recognition. The aim of the research was to develop a new strategy to design oligonucleotide sequences for binding OPPs by combination of experimental and molecular modeling methods. 3D models of aptamers binding OPPs were constructed, and binding energy and the most probable binding site for the OPPs were then determined by molecular docking, and the binding sites were further confirmed by the results of 2-AP replaced experiments. Based on the docking results, a new aptamer for detection 4 representative OPPs with only 29 bases was designed by reasonable truncation and mutation of the reported aptamer(named S4-29). The interaction between this new aptamer and OPPs were analyzed by molecular docking, microscale thermophoresis, circular dichroism and fluorometric analysis. The results revealed that the new aptamer exhibit more superior recognition performance to OPPs, which can be promote the monitoring ability of OPPs contaminations in food.展开更多
In this work,a novel bifunctional zirconium dioxide@zeolitic imidazolate framework-90(ZrO_(2)@ZIF-90)nanozyme was successfully developed for the catalytic degradation and electrochemical detection of methyl parathion(...In this work,a novel bifunctional zirconium dioxide@zeolitic imidazolate framework-90(ZrO_(2)@ZIF-90)nanozyme was successfully developed for the catalytic degradation and electrochemical detection of methyl parathion(MP).The ZrO_(2)@ZIF-90 nanozyme with phosphatase hydrolysis activity can convert MP into p-nitrophenol(p-NP).The addition of ZrO_(2)riched in Lewis acid Zr(IV)sites significantly enhanced the phosphatase hydrolysis activity of ZIF-90.ZrO_(2)@ZIF-90 also displayed satisfactory electrocatalytic performance on account of the high surface area,high porosity and powerful enrichment ability of the ZIF-90 and the excellent ion transfer capacity of ZrO_(2).A ZrO_(2)@ZIF-90 nanozyme modified glassy carbon electrode(ZrO_(2)@ZIF-90/GCE)was then fabricated to analyze p-NP formed through MP degradation.Under the optimized conditions,the developed sensor displayed satisfactory analytical performance with a low limit of detection of 0.53μmol/L and two wide linear ranges(3-10 and 10-200μmol/L).ZrO_(2)@ZIF-90 nanozyme accomplished to the degradation and electrochemical detection of MP in river water and spiked fruits.This study identifies a promising new strategy for the design of bifunctional nanozymes for the detection of environmental hazards.展开更多
基金supported by Key Research and Development Project of Shandong Province(2021ZDSYS12)National Natural Science Foundation of China(22076086,21777089)+3 种基金Taishan Scholar Program of Shandong Province(ts20190948)Shandong Province Science and Technology Small and Medium Enterprises Innovation Ability Enhancement Project(2023TSGC0689,2023TSGC0055)Natural Science Foundation of Shandong Province(ZR2021MB086,ZR2023QB035)Jinan City University and Institute Innovation Team Project(2021GXRC061,20228045,202333027)。
文摘Organophosphorus pesticides(OPPs)in foods pose a serious threat to human health,motivating the development of novel analytical methods for their rapid detection and quantification.A magnetic covalent organic framework(M-COF)adsorbent for the magnetic solid-phase extraction(MSPE)of OPPs from foods was reported.M-COF was synthesized by the Schiff base condensation reaction of 1,3,5-tris(4-aminophenyl)benzene and 4,4-biphenyldicarboxaldehyde on the surface of amino-functionalized magnetic nanoparticles.Density functional theory(DFT)calculations showed that adsorption of OPPs onto the surface of M-COF involved hydrophobic effects,van der Waals interactions,π-πinteractions,halogen-N bonding,and hydrogen bonding.Combined with gas chromatography-mass spectrometry(GC-MS)technology,the MSPE method features low limits of detection for OPPs(0.002-0.015μg/L),good reproducibility(1.45%-6.14%),wide linear detection range(0.01-1μg/L,R≥0.9935),and satisfactory recoveries(87.3%-110.4%).The method was successfully applied for the trace analysis of OPPs in spiked fruit juices.
基金supported by the National Natural Science Foundation of China (31801647)Sichuan Science and Technology Program (2018JY0194,2020YFN0153,2020YFN0151)。
文摘Aptamers as a kind of biological recognition element have shown great potential in monitoring and the rapid quantification of organophosphorus pesticides(OPPs). However, molecules of OPPs are structurally similar and original aptamers selected by systematic evolution of ligands by exponential enrichment are usually long-chain bases, which hamper the further application under OPPs-aptamer recognition. The aim of the research was to develop a new strategy to design oligonucleotide sequences for binding OPPs by combination of experimental and molecular modeling methods. 3D models of aptamers binding OPPs were constructed, and binding energy and the most probable binding site for the OPPs were then determined by molecular docking, and the binding sites were further confirmed by the results of 2-AP replaced experiments. Based on the docking results, a new aptamer for detection 4 representative OPPs with only 29 bases was designed by reasonable truncation and mutation of the reported aptamer(named S4-29). The interaction between this new aptamer and OPPs were analyzed by molecular docking, microscale thermophoresis, circular dichroism and fluorometric analysis. The results revealed that the new aptamer exhibit more superior recognition performance to OPPs, which can be promote the monitoring ability of OPPs contaminations in food.
基金financially supported by the National Natural Science Foundation of China(No.31972149)Innovation Capability Improvement Project of Scientific and Technological Small and Medium-sized Enterprises in Shandong Province(No.2022TSGC2409)the Mac Diarmid Institute for Advanced Materials and Nanotechnology and the Dodd-Walls Centre for Photonic and Quantum Technologies。
文摘In this work,a novel bifunctional zirconium dioxide@zeolitic imidazolate framework-90(ZrO_(2)@ZIF-90)nanozyme was successfully developed for the catalytic degradation and electrochemical detection of methyl parathion(MP).The ZrO_(2)@ZIF-90 nanozyme with phosphatase hydrolysis activity can convert MP into p-nitrophenol(p-NP).The addition of ZrO_(2)riched in Lewis acid Zr(IV)sites significantly enhanced the phosphatase hydrolysis activity of ZIF-90.ZrO_(2)@ZIF-90 also displayed satisfactory electrocatalytic performance on account of the high surface area,high porosity and powerful enrichment ability of the ZIF-90 and the excellent ion transfer capacity of ZrO_(2).A ZrO_(2)@ZIF-90 nanozyme modified glassy carbon electrode(ZrO_(2)@ZIF-90/GCE)was then fabricated to analyze p-NP formed through MP degradation.Under the optimized conditions,the developed sensor displayed satisfactory analytical performance with a low limit of detection of 0.53μmol/L and two wide linear ranges(3-10 and 10-200μmol/L).ZrO_(2)@ZIF-90 nanozyme accomplished to the degradation and electrochemical detection of MP in river water and spiked fruits.This study identifies a promising new strategy for the design of bifunctional nanozymes for the detection of environmental hazards.