期刊文献+
共找到822篇文章
< 1 2 42 >
每页显示 20 50 100
Embryos - the evolutionary boundary of kingdoms of organisms
1
作者 FUDa-li 《Journal of Forestry Research》 SCIE CAS CSCD 2005年第1期65-66,i004,共3页
Bioevolution is still a main puzzle and attracts many scientists to research on it. Here I present that organisms have two impor- tant properties, definite structure and self-reproduction. Based on the number and conn... Bioevolution is still a main puzzle and attracts many scientists to research on it. Here I present that organisms have two impor- tant properties, definite structure and self-reproduction. Based on the number and connection of the structural units, organisms can be di- vided into three groups, unicellular, particellular and polycellular organisms. It can be called polycellular evolution that organisms evolve from unicellular, particellular to polycellular. Also it can be called diploid evolution that organisms evolve from haplobes to diplobes, two groups based on the reproductive differences. Some concepts like spore, zygote and embryos are redefined in the paper. Moreover, I present that embryos are the most important boundary of bioevolution and organisms can be divided into two evolutionary phases, the lower and the higher. The lower organisms, Kingdom Microbia (kingd. nov.), are inembryonate, which include Acytophyla (phyl. nov.), bacteria, protozoa, fungi and inembryonate algae. The higher organisms are embryonate and have two branches, Kingdom Plantae and Kingdom Animalia. Plantae are sessile and, autotrophic or sporogenic, which include higher plants and Nudembryophyta (phyl. nov.). Animalia are heterotrophic and, motile or gametogenic, which include all multicellular animals. The new system, which reflects the two important phases of bioevolu- tion and two branches of higher organisms, can really correct the problem of different kingdoms in different researches or by different re- searchers. 展开更多
关键词 Particellular organism Polycellular organism Kingdom Microbia kingd. nov. Kingdom Plantae Kingdom Animalia Phylum Nudembryophyta phyl. nov. Phylum Acytophyla phyl. nov.
在线阅读 下载PDF
Interaction between Low Energy ions and the Complicated Organism 被引量:4
2
作者 余增亮 《Plasma Science and Technology》 SCIE EI CAS CSCD 1999年第1期79-85,共7页
Low energy ions exist widely in natural world, but people pay a little attention on. the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy io... Low energy ions exist widely in natural world, but people pay a little attention on. the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy ions and the complicated organism. The discovery of bioeffect induced by ion implantation has, however, opened a new branch in the field of ion beam application in life sciences. This paper reports recent advances in research on the role of low energy ions in Chemical synthesis of the biomolecules and application in genetic modification. 展开更多
关键词 CM Interaction between Low Energy ions and the Complicated organism
在线阅读 下载PDF
Effects of Hydroxyl Radicals on Introduced Organisms of Ship's Ballast Water Based Micro-Gap Discharge 被引量:2
3
作者 白敏冬 张芝涛 +2 位作者 白敏菂 杨波 白希尧 《Plasma Science and Technology》 SCIE EI CAS CSCD 2007年第2期206-210,共5页
With the physical method of micro-gap gas discharge, OH. radicals were produced by the ionization of O2 in air and H2O in the gaseous state, in order to explore more effective method totreat the ship's ballast water.... With the physical method of micro-gap gas discharge, OH. radicals were produced by the ionization of O2 in air and H2O in the gaseous state, in order to explore more effective method totreat the ship's ballast water. The surface morphology of Al2O3 dielectric layer was analysed using Atomic Force Microscopy (AFM), where the size of Al2O3 particles was in the range of 2 μm to 5 μm. At the same time, the biochemical effect of hydroxyl radicals on the introduced organisms and the quality of ship's ballast water were studied. The results indicate that the main reasons of cell death are lipid peroxide and damage of the antioxidant enzyme system in Catalase (CAT), Peroxidase (POD) and Superoxide dismutase (SOD). In addition, the quality of the ballast water was greatly improved. 展开更多
关键词 micro-gap discharge α-Al2O3 dielectric layers introduced organisms hydroxyl radical biochemistry effect
在线阅读 下载PDF
Prediction of specific spoilage organisms in smoked chicken legs with modified atmosphere packaging at 4℃ using multivariate statistical analysis
4
作者 Qiang Wang Yubo Zhao +5 位作者 Yumeng Sui Qian Chen Zhiming Dong Qian Liu Baohua Kong Ligang Qin 《Food Science and Human Wellness》 2025年第1期271-281,共11页
The present study monitored bacterial succession,physicochemical properties,and volatile organic compounds(VOCs)changes in smoked chicken legs with modified atmosphere packaging(MAP,60% CO_(2) and 40%N_(2))during a 25... The present study monitored bacterial succession,physicochemical properties,and volatile organic compounds(VOCs)changes in smoked chicken legs with modified atmosphere packaging(MAP,60% CO_(2) and 40%N_(2))during a 25-day storage period at 4℃.After 15 days of storage,S erratia proteamaculans and Pseudomonas fragi became the predominant bacteria.Furthermore,physicochemical properties changed significantly,as evidenced by an increase in thiobarbituric acid reactive substances and b*(yellowness)value,and a decrease in hardness.A total of 65 VOCs were identified during storage.Correlation between bacterial succession and quality indicators(including VOCs and physicochemical properties)allowed the identification of 26 core dominant bacteria,including S.proteamaculans,Psychrobacter alimentarius,Pseudomonas putida,and Pseudomonas poae,which were positively related to spoilage VOCs(e.g.,1-octen-3-ol,1-pentanol,and 3-methyl-1-butanol)and could be defined as specific spoilage organisms(SSOs).The results of this study provide a systematic approach to predict SSOs in smoked chicken legs during storage,which can also provide a basis for product safety. 展开更多
关键词 Smoked chicken legs Modified atmosphere packaging Bacterial community Volatile organic compounds Specific spoilage organisms
在线阅读 下载PDF
Ultra‑Transparent and Multifunctional IZVO Mesh Electrodes for Next‑Generation Flexible Optoelectronics
5
作者 Kiran A.Nirmal Tukaram D.Dongale +3 位作者 Atul C.Khot Chenjie Yao Nahyun Kim Tae Geun Kim 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期293-309,共17页
Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices.Furthermore,they are crucial for applications in the fields of energy,display,healthcare,a... Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices.Furthermore,they are crucial for applications in the fields of energy,display,healthcare,and soft robotics.Conducting meshes represent a promising alternative to traditional,brittle,metal oxide conductors due to their high electrical conductivity,optical transparency,and enhanced mechanical flexibility.In this paper,we present a simple method for fabricating an ultra-transparent conducting metal oxide mesh electrode using selfcracking-assisted templates.Using this method,we produced an electrode with ultra-transparency(97.39%),high conductance(Rs=21.24Ωsq^(−1)),elevated work function(5.16 eV),and good mechanical stability.We also evaluated the effectiveness of the fabricated electrodes by integrating them into organic photovoltaics,organic light-emitting diodes,and flexible transparent memristor devices for neuromorphic computing,resulting in exceptional device performance.In addition,the unique porous structure of the vanadium-doped indium zinc oxide mesh electrodes provided excellent flexibility,rendering them a promising option for application in flexible optoelectronics. 展开更多
关键词 Self-cracking template Vanadium-doped indium zinc oxide mesh Organic solar cells Organic light-emitting diodes Flexible transparent memory
在线阅读 下载PDF
Molecular Structure Tailoring of Organic Spacers for High‑Performance Ruddlesden–Popper Perovskite Solar Cells
6
作者 Pengyun Liu Xuejin Li +6 位作者 Tonghui Cai Wei Xing Naitao Yang Hamidreza Arandiyan Zongping Shao Shaobin Wang Shaomin Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期314-357,共44页
Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(P... Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications. 展开更多
关键词 Ruddlesden-Popper perovskites Low-dimensional perovskite solar cells Organic spacers Molecular structure Design strategies
在线阅读 下载PDF
Porous Organic Cage‑Based Quasi‑Solid‑State Electrolyte with Cavity‑Induced Anion‑Trapping Effect for Long‑Life Lithium Metal Batteries
7
作者 Wei-Min Qin Zhongliang Li +7 位作者 Wen‑Xia Su Jia‑Min Hu Hanqin Zou Zhixuan Wu Zhiqin Ruan Yue‑Peng Cai Kang Li Qifeng Zheng 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期376-386,共11页
Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testifie... Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries. 展开更多
关键词 Porous organic cage Cavity-induced anion-trapping Quasi-solid-state electrolyte Homogeneous Li+flux Lithium metal battery
在线阅读 下载PDF
An Unprecedented Efficiency with Approaching 21%Enabled by Additive‑Assisted Layer‑by‑Layer Processing in Organic Solar Cells
8
作者 Shuai Xu Youdi Zhang +6 位作者 Yanna Sun Pei Cheng Zhaoyang Yao Ning Li Long Ye Lijian Zuo Ke Gao 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期372-375,共4页
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act... Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs. 展开更多
关键词 Organic solar cells Additive-assisted layer-by-layer processing Three-dimensional fibril morphology Bulk p-i-n structure Optical management
在线阅读 下载PDF
Constructing Donor–Acceptor‑Linked COFs Electrolytes to Regulate Electron Density and Accelerate the Li^(+)Migration in Quasi‑Solid‑State Battery
9
作者 Genfu Zhao Hang Ma +5 位作者 Conghui Zhang Yongxin Yang Shuyuan Yu Haiye Zhu Yongjiang Sun Hong Guo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期456-471,共16页
Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-... Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-performance solid-state electrolyte thorough D–A-linked covalent organic frameworks(COFs)based on intramolecular charge transfer interactions.Unlike other reported COFbased solid-state electrolyte,the developed concept with D–A-linked COFs not only achieves electronic modulation to promote highly-selective Li^(+)migration and inhibit Li dendrite,but also offers a crucial opportunity to understand the role of electronic density in solid-state Li metal batteries.The introduced strong electronegativity F-based ligand in COF electrolyte results in highlyselective Li^(+)(transference number 0.83),high ionic conductivity(6.7×10^(-4)S cm^(−1)),excellent cyclic ability(1000 h)in Li metal symmetric cell and high-capacity retention in Li/LiFePO_(4)cell(90.8%for 300 cycles at 5C)than substituted C-and N-based ligands.This is ascribed to outstanding D–A interaction between donor porphyrin and acceptor F atoms,which effectively expedites electron transferring from porphyrin to F-based ligand and enhances Li^(+)kinetics.Consequently,we anticipate that this work creates insight into the strategy for accelerating Li^(+)conduction in high-performance solid-state Li metal batteries through D–A system. 展开更多
关键词 Electronic modulation engineering Donor-acceptor-linked covalent organic frameworks Quasi-solid-state Li metal battery
在线阅读 下载PDF
Visible to near-infrared photodetector based on organic semiconductor single crystal
10
作者 LI Xiang HU Jin-Han +7 位作者 ZHONG Zhi-Peng CHEN Yu-Zhong WANG Zhi-Qiang SONG Miao-Miao WANG Yang ZHANG Lei LI Jian-Feng HUANG Hai 《红外与毫米波学报》 北大核心 2025年第1期46-51,共6页
Organic semiconductor materials have shown unique advantages in the development of optoelectronic devices due to their ease of preparation,low cost,lightweight,and flexibility.In this work,we explored the application ... Organic semiconductor materials have shown unique advantages in the development of optoelectronic devices due to their ease of preparation,low cost,lightweight,and flexibility.In this work,we explored the application of the organic semiconductor Y6-1O single crystal in photodetection devices.Firstly,Y6-1O single crystal material was prepared on a silicon substrate using solution droplet casting method.The optical properties of Y6-1O material were characterized by polarized optical microscopy,fluorescence spectroscopy,etc.,confirming its highly single crystalline performance and emission properties in the near-infrared region.Phototransistors based on Y6-1O materials with different thicknesses were then fabricated and tested.It was found that the devices exhibited good visible to near-infrared photoresponse,with the maximum photoresponse in the near-infrared region at 785 nm.The photocurrent on/off ratio reaches 10^(2),and photoresponsivity reaches 16 mA/W.It was also found that the spectral response of the device could be regulated by gate voltage as well as the material thickness,providing important conditions for optimizing the performance of near-infrared photodetectors.This study not only demonstrates the excellent performance of organic phototransistors based on Y6-1O single crystal material in near-infrared detection but also provides new ideas and directions for the future development of infrared detectors. 展开更多
关键词 near-infrared photodetector organic semiconductor Y6-1O single crystal spectral response
在线阅读 下载PDF
Chinese clinical practice consensus for device-supported treatment in adults with post-cardiac arrest syndrome(2024 Edition)
11
作者 Chuanbao Li Shengchuan Cao +6 位作者 Yue Zheng Mengzhi Zong Haitao Zhang Xuezhong Yu Feng Xu Yuguo Chen the Chinese Clinical Practice Consensus for Device-supported Treatment in Adults with Post-cardiac Arrest Syndrome Work group 《World Journal of Emergency Medicine》 2025年第1期3-9,共7页
During cardiac arrest (CA),severe ischemia and hypoxia occur in tissues and organs of the entire body,inflammatory cytokines are released,and ischemiareperfusion injury occurs after the return of spontaneous circulati... During cardiac arrest (CA),severe ischemia and hypoxia occur in tissues and organs of the entire body,inflammatory cytokines are released,and ischemiareperfusion injury occurs after the return of spontaneous circulation (ROSC),leading to multiple organ dysfunction in the body;this condition is called post-CA syndrome(PCAS).^([1])According to the BASeline Investigation of Out-of-Hospital Cardiac Arrest (BASIC-OHCA) study,the crude incidence of emergency medical service (EMS)-assessed OHCA was 95.7 per 100,000 individuals,and only1.2%of those individuals survived to hospital discharge or30 d after being resuscitated by the EMS in China. 展开更多
关键词 CARDIAC ORGANS RETURN
在线阅读 下载PDF
Status and prospects for symmetric organic redox flow batteries
12
作者 Md Al Raihan C.Adam Dyker 《Journal of Energy Chemistry》 2025年第1期125-143,共19页
As environmental concerns from fossil fuel consumption intensify,large-scale energy storage becomes imperative for the integration of renewable sources like wind,hydro,and solar with the electrical grid.Redox flow bat... As environmental concerns from fossil fuel consumption intensify,large-scale energy storage becomes imperative for the integration of renewable sources like wind,hydro,and solar with the electrical grid.Redox flow batteries,particularly those employing organic molecules,are positioned as a key technology for this purpose.This review explores the growing field of symmetric organic redox flow batteries(ORFBs)within this context.Unlike traditional asymmetric designs based on unique active materials for each electrode,symmetric ORFBs involve a single bipolar species for both electrodes.This review highlights the benefits of a symmetric design,and categorizes five distinct classes of organic bipolar molecules used in both aqueous and non-aqueous solvents.By providing a comprehensive overview of their cell cycling and performance characteristics,the strengths and weaknesses of the diverse categories of bipolar molecules are highlighted for both solvent systems,as are opportunities for future development.This should guide new research directions and advance the development of practical symmetric ORFBs. 展开更多
关键词 Redox flow battery Symmetric battery Organic battery Aqueous electrolyte Non-aqueousel ectrolyte
在线阅读 下载PDF
Machine learning empowers efficient design of ternary organic solar cells with PM6 donor
13
作者 Kiran A.Nirmal Tukaram D.Dongale +2 位作者 Santosh S.Sutar Atul C.Khot Tae Geun Kim 《Journal of Energy Chemistry》 2025年第1期337-347,共11页
Organic solar cells(OSCs) hold great potential as a photovoltaic technology for practical applications.However, the traditional experimental trial-and-error method for designing and engineering OSCs can be complex, ex... Organic solar cells(OSCs) hold great potential as a photovoltaic technology for practical applications.However, the traditional experimental trial-and-error method for designing and engineering OSCs can be complex, expensive, and time-consuming. Machine learning(ML) techniques enable the proficient extraction of information from datasets, allowing the development of realistic models that are capable of predicting the efficacy of materials with commendable accuracy. The PM6 donor has great potential for high-performance OSCs. However, it is crucial for the rational design of a ternary blend to accurately forecast the power conversion efficiency(PCE) of ternary OSCs(TOSCs) based on a PM6 donor.Accordingly, we collected the device parameters of PM6-based TOSCs and evaluated the feature importance of their molecule descriptors to develop predictive models. In this study, we used five different ML algorithms for analysis and prediction. For the analysis, the classification and regression tree provided different rules, heuristics, and patterns from the heterogeneous dataset. The random forest algorithm outperforms other prediction ML algorithms in predicting the output performance of PM6-based TOSCs. Finally, we validated the ML outcomes by fabricating PM6-based TOSCs. Our study presents a rapid strategy for assessing a high PCE while elucidating the substantial influence of diverse descriptors. 展开更多
关键词 Machine learning Ternary organic solarcells PM6 donor PCE
在线阅读 下载PDF
Organic solvent nanofiltration membranes for separation in non-polar solvent system
14
作者 Shuyun Gu Siyao Li Zhi Xu 《Green Energy & Environment》 2025年第2期244-267,共24页
Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltr... Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltration represents an advanced membrane separation technology capable of discerning molecules within a molecular weight range of approximately 100-1000 Da in organic solvents,offering low energy requirements and minimal carbon footprints.Molecular separation in non-polar solvent system,such as toluene,n-hexane,and n-heptane,has gained paramount importance due to their extensive use in the pharmaceutical,biochemical,and petrochemical industries.In this review,we presented recent advancements in membrane materials,membrane fabrication techniques and their promising applications for separation in nonpolar solvent system,encompassing hydrocarbon separation,bioactive molecule purification and organic solvent recovery.Furthermore,this review highlighted the challenges and opportunities associated with membrane scale-up strategies and the direct translation of this promising technology into industrial applications. 展开更多
关键词 Organic solvent nanofiltration Membranes Membrane separation Non-polar solvent system Petrochemical and pharmaceutical application
在线阅读 下载PDF
A low redox potential and long life organic anode material for sodium-ion batteries
15
作者 Zhi Li Yang Wei +7 位作者 Kang Zhou Xin Huang Xing Zhou Jie Xu Taoyi Kong Junwei Lucas Bao Xiaoli Dong Yonggang Wang 《Journal of Energy Chemistry》 2025年第1期557-564,共8页
Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials ... Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials for SIBs are mainly used as cathodes because of their relatively high redox potentials(>1 V).Organic electrodes with low redox potential that can be used as anode are rare.Herein,a novel organic anode material (tetrasodium 1,4,5,8-naphthalenetetracarboxylate,Na_(4)TDC) has been developed with low redox potential (<0.7 V) and excellent cyclic stability.Its three-sodium storage mechanism was demonstrated with various in-situ/ex-situ spectroscopy and theoretical calculations,showing a high capacity of 208 mAh/g and an average decay rate of merely 0.022%per cycle.Moreover,the Na_(4)TDC-hard carbon composite can further acquire improved capacity and cycling stability for 1200 cycles even with a high mass loading of up to 20 mg cm^(-2).By pairing with a thick Na_(3)V_(2)(PO_(4))_(3)cathode (20.6 mg cm^(-2)),the as-fabricated full cell exhibited high operating voltage (2.8 V),excellent rate performance and cycling stability with a high capacity retention of 88.7% after 200 cycles,well highlighting the Na_(4)TDC anode material for SIBs. 展开更多
关键词 Organic anode material Low redox potential Composite anode Sodium-ion batteries
在线阅读 下载PDF
Facile synthesis of magnetic covalent organic framework nanocomposites for the enrichment and quantification of trace organophosphorus pesticides in fruit juice
16
作者 Quanbin Fu Xin Sun +4 位作者 Lu Liu Hailong Jiang Geoffrey I.N.Waterhouse Shiyun Ai Rusong Zhao 《Food Science and Human Wellness》 2025年第3期1106-1114,共9页
Organophosphorus pesticides(OPPs)in foods pose a serious threat to human health,motivating the development of novel analytical methods for their rapid detection and quantification.A magnetic covalent organic framework... Organophosphorus pesticides(OPPs)in foods pose a serious threat to human health,motivating the development of novel analytical methods for their rapid detection and quantification.A magnetic covalent organic framework(M-COF)adsorbent for the magnetic solid-phase extraction(MSPE)of OPPs from foods was reported.M-COF was synthesized by the Schiff base condensation reaction of 1,3,5-tris(4-aminophenyl)benzene and 4,4-biphenyldicarboxaldehyde on the surface of amino-functionalized magnetic nanoparticles.Density functional theory(DFT)calculations showed that adsorption of OPPs onto the surface of M-COF involved hydrophobic effects,van der Waals interactions,π-πinteractions,halogen-N bonding,and hydrogen bonding.Combined with gas chromatography-mass spectrometry(GC-MS)technology,the MSPE method features low limits of detection for OPPs(0.002-0.015μg/L),good reproducibility(1.45%-6.14%),wide linear detection range(0.01-1μg/L,R≥0.9935),and satisfactory recoveries(87.3%-110.4%).The method was successfully applied for the trace analysis of OPPs in spiked fruit juices. 展开更多
关键词 Covalent organic framework Gas chromatography-mass spectrometry Magnetic solid-phase extraction Organophosphorus pesticides Fruit juice
在线阅读 下载PDF
RGB Color-Discriminable Photonic Synapse for Neuromorphic Vision System
17
作者 Bum Ho Jeong Jaewon Lee +6 位作者 Miju Ku Jongmin Lee Dohyung Kim Seokhyun Ham Kyu-Tae Lee Young-Beom Kim Hui Joon Park 《Nano-Micro Letters》 2025年第4期39-62,共24页
To emulate the functionality of the human retina and achieve a neuromorphic visual system,the development of a photonic synapse capable of multispectral color discrimination is of paramount importance.However,attainin... To emulate the functionality of the human retina and achieve a neuromorphic visual system,the development of a photonic synapse capable of multispectral color discrimination is of paramount importance.However,attaining robust color discrimination across a wide intensity range,even irrespective of medium limitations in the channel layer,poses a significant challenge.Here,we propose an approach that can bestow the color-discriminating synaptic functionality upon a three-terminal transistor flash memory even with enhanced discriminating capabilities.By incorporating the strong induced dipole moment effect at the excitation,modulated by the wavelength of the incident light,into the floating gate,we achieve outstanding RGB color-discriminating synaptic functionality within a remarkable intensity range spanning from 0.05 to 40 mW cm^(-2).This approach is not restricted to a specific medium in the channel layer,thereby enhancing its applicability.The effectiveness of this color-discriminating synaptic functionality is demonstrated through visual pre-processing of a photonic synapse array,involving the differentiation of RGB channels and the enhancement of image contrast with noise reduction.Consequently,a convolutional neural network can achieve an impressive inference accuracy of over 94%for Canadian-Institute-For-Advanced-Research-10 colorful image recognition task after the pre-processing.Our proposed approach offers a promising solution for achieving robust and versatile RGB color discrimination in photonic synapses,enabling significant advancements in artificial visual systems. 展开更多
关键词 Organic field-effect transistor Photonic synapse Excited-state dipole moment RGB color discrimination Neuromorphic visual system
在线阅读 下载PDF
All‑Covalent Organic Framework Nanofilms Assembled Lithium‑Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics 被引量:3
18
作者 Xiaoyang Xu Jia Zhang +6 位作者 Zihao Zhang Guandan Lu Wei Cao Ning Wang Yunmeng Xia Qingliang Feng Shanlin Qiao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期246-260,共15页
Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in superca... Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in supercapacitors.The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors(LICs).Herein,for the first time,custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode,respectively,for an all-COF nanofilm-structured LIC.The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li^(+) migration to ensure the rapid anode kinetic process.The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity.Due to the aligned 1D channel,2D aromatic skeleton and accessible active sites of COF nanofilms,the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm^(−3) at a high-power density of 6 W cm^(−3),excellent rate capability,good cycle stability with the capacity retention rate of 77%after 5000-cycle.The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors.After being comprehensively explored via ex situ XPS,7Li solid-state NMR analyses,and DFT calculation,it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage.COFBTMB-TP exhibits a strong interaction with Li^(+) due to the C–F,C=O,and C–N bonds,facilitating Li^(+) desolation and absorption from the electrolyte.This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices. 展开更多
关键词 Covalent organic frameworks Lithium-ion capacitor Charge storage kinetic
在线阅读 下载PDF
Geochemical identification of a source rock affected by migrated hydrocarbons and its geological significance:Fengcheng Formation,southern Mahu Sag,Junggar Basin,NW China 被引量:2
19
作者 Wen-Long Dang Gang Gao +5 位作者 Xin-Cai You Ke-Ting Fan Jun Wu De-Wen Lei Wen-Jun He Yong Tang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期100-114,共15页
The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of th... The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation. 展开更多
关键词 Organic geochemistry Source rock Influence of migrated hydrocarbons Fengcheng Formation Southern Mahu Sag
在线阅读 下载PDF
Combined Promoting Effects of Specific Organic Functional Groups and Alumina Surface Characteristics for the Design of a Highly Efficient NiMo/Al_(2)O_(3) Hydrodesulfurization Catalyst 被引量:2
20
作者 Li Huifeng Li Mingfeng +2 位作者 Zhang Le Wang Wei Nie Hong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期1-11,共11页
To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation betwe... To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases. 展开更多
关键词 ALUMINA Mo equilibrium adsorption capacity organic functional groups metal-support interaction HYDRODESULFURIZATION
在线阅读 下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部