期刊文献+
共找到760篇文章
< 1 2 38 >
每页显示 20 50 100
Improved artificial bee colony algorithm with mutual learning 被引量:7
1
作者 Yu Liu Xiaoxi Ling +1 位作者 Yu Liang Guanghao Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期265-275,共11页
The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs ... The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs well in most cases, however, there still exists an insufficiency in the ABC algorithm that ignores the fitness of related pairs of individuals in the mechanism of find- ing a neighboring food source. This paper presents an improved ABC algorithm with mutual learning (MutualABC) that adjusts the produced candidate food source with the higher fitness between two individuals selected by a mutual learning factor. The perfor- mance of the improved MutualABC algorithm is tested on a set of benchmark functions and compared with the basic ABC algo- rithm and some classical versions of improved ABC algorithms. The experimental results show that the MutualABC algorithm with appropriate parameters outperforms other ABC algorithms in most experiments. 展开更多
关键词 artificial bee colony (ABC) algorithm numerical func- tion optimization swarm intelligence mutual learning.
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
2
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
Artificial bee colony algorithm with comprehensive search mechanism for numerical optimization 被引量:5
3
作者 Mudong Li Hui Zhao +1 位作者 Xingwei Weng Hanqiao Huang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期603-617,共15页
The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is... The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is still insufficient in balancing ex- ploration and exploitation. To solve this problem, we put forward an improved algorithm with a comprehensive search mechanism. The search mechanism contains three main strategies. Firstly, the heuristic Gaussian search strategy composed of three different search equations is proposed for the employed bees, which fully utilizes and balances the exploration and exploitation of the three different search equations by introducing the selectivity probability P,. Secondly, in order to improve the search accuracy, we propose the Gbest-guided neighborhood search strategy for onlooker bees to improve the exploitation performance of ABC. Thirdly, the self- adaptive population perturbation strategy for the current colony is used by random perturbation or Gaussian perturbation to en- hance the diversity of the population. In addition, to improve the quality of the initial population, we introduce the chaotic opposition- based learning method for initialization. The experimental results and Wilcoxon signed ranks test based on 27 benchmark func- tions show that the proposed algorithm, especially for solving high dimensional and complex function optimization problems, has a higher convergence speed and search precision than ABC and three other current ABC-based algorithms. 展开更多
关键词 artificial bee colony (ABC) function optimization search strategy population initialization Wilcoxon signed ranks test.
在线阅读 下载PDF
Study of Direction Probability and Algorithm of Improved Marriage in Honey Bees Optimization for Weapon Network System 被引量:2
4
作者 杨晨光 涂序彦 陈杰 《Defence Technology(防务技术)》 SCIE EI CAS 2009年第2期152-157,共6页
To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damagin... To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damaging probability that changes with the defending angle,the efficiency of the whole weapon network system can be subtly described.With such method,we can avoid the inconformity of the description obtained from the traditional index systems.Three new indexes are also proposed,i.e.join index,overlap index and cover index,which help manage the relationship among several sub-weapon-networks.By normalizing the computation results with the Sigmoid function,the matching problem between the optimization algorithm and indexes is well settled.Also,the algorithm of improved marriage in honey bees optimization that proposed in our previous work is applied to optimize the embattlement problem.Simulation is carried out to show the efficiency of the proposed indexes and the optimization algorithm. 展开更多
关键词 网络系统 优化问题 破坏概率 算法改进 核武器 蜜蜂 婚姻 SIGMOID函数
在线阅读 下载PDF
基于邻域搜索策略的蜣螂优化算法及应用 被引量:1
5
作者 杜晓昕 牛丽明 +3 位作者 王波 王一萍 李长荣 王振飞 《广西师范大学学报(自然科学版)》 北大核心 2025年第2期149-167,共19页
针对蜣螂优化算法存在收敛速度慢,容易陷入局部最优,且全局探索能力较弱等问题,受领导者-追随者策略(leader-follower)的启发,本文提出一种基于邻域搜索策略的蜣螂优化算法。首先,引入Singer映射初始化种群,提高初始解的质量,提高算法... 针对蜣螂优化算法存在收敛速度慢,容易陷入局部最优,且全局探索能力较弱等问题,受领导者-追随者策略(leader-follower)的启发,本文提出一种基于邻域搜索策略的蜣螂优化算法。首先,引入Singer映射初始化种群,提高初始解的质量,提高算法的收敛速度;其次,提出一种邻域搜索策略来增强种群多样性,跳出局部收敛,提高算法的局部开发能力;最后,设计一种精英池-扰动策略来扩大搜索范围,增强算法的全局勘探和局部寻优能力,提高算法的求解效率及求解精度。为了验证所提算法的有效性,本文设计一系列实验来验证所提算法的性能,结果表明,该算法在寻优精度和收敛速度方面有较大提升。将该算法应用于无人机三维路径规划问题,实验结果表明,该算法在处理实际应用问题时表现出了有效性和高效性。 展开更多
关键词 蜣螂优化算法 路径规划 Singer映射 邻域搜索策略 精英池-扰动策略
在线阅读 下载PDF
基于自适应等效能耗最小的燃料电池船舶能量管理策略 被引量:1
6
作者 许晓彦 曹伟 韩冰 《太阳能学报》 北大核心 2025年第3期108-115,共8页
为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储... 为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储能系统最终电量和初始电量误差最小为目标函数,求解燃料电池系统和储能系统的最优运行轨迹;在下层优化中,建立等效因子的优化模型,提取最优等效因子的分布。然后,建立以系统状态参数为输入、等效因子为输出的神经网络模型。利用最优的等效因子作为训练样本,对神经网络模型进行训练。最后,将神经网络模型与等效能耗最小策略相结合,可实现等效因子的实时调整。在Matlab/Simulink中搭建船舶混合能源系统的仿真模型,对基于自适应等效能耗最小的能量管理策略进行验证。仿真结果表明,与基于恒定等效因子的等效能耗最小策略相比,储能系统的最终电量更接近初始值,氢气的总消耗量降低1.98%。 展开更多
关键词 燃料电池船 能量管理策略 神经网络 等效因子 多种群自适应协同的粒子群优化算法
在线阅读 下载PDF
基于粒子群和蜂群算法的无人机路径规划 被引量:2
7
作者 刘晓芬 吴传淑 +1 位作者 张紫瑞 陈珏先 《兵工自动化》 北大核心 2025年第4期107-112,共6页
针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particleswarm optimization,PSO)和人工蜂群(artificialbeecolony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径... 针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particleswarm optimization,PSO)和人工蜂群(artificialbeecolony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径,使得到的路径更加平滑,无人机机动转弯相对更少。结果表明:该研究提高了无人机飞行的安全性和高效性,便于无人机的飞行控制跟踪实现。 展开更多
关键词 路径规划 B样条 粒子群算法 人工蜂群算法 飞行控制
在线阅读 下载PDF
基于SSAPSO-PID的白胡椒熟化温度控制系统设计与试验
8
作者 俞国燕 张嘉伟 +3 位作者 张园 韦丽娇 赵振华 沈德战 《农业机械学报》 北大核心 2025年第5期589-596,共8页
为解决白胡椒初加工生产线熟化环节长时间无法维持恒温控制、过度依赖人工辅助控温等问题,设计了基于PID的白胡椒初加工生产线熟化温度控制系统。利用STM32和触摸屏控制蒸汽发生器和电调节阀,PT100温度传感器实时监测温度并反馈至系统,... 为解决白胡椒初加工生产线熟化环节长时间无法维持恒温控制、过度依赖人工辅助控温等问题,设计了基于PID的白胡椒初加工生产线熟化温度控制系统。利用STM32和触摸屏控制蒸汽发生器和电调节阀,PT100温度传感器实时监测温度并反馈至系统,通过控制算法调节蒸汽流量以确保稳定控制。采用开环阶跃响应法建立并拟合了熟化机内温度与时间的数学模型,通过Simulink仿真试验对比了Ziegler-Nichols整定法、临界比例度法、衰减曲线法以及基于麻雀搜索算法的粒子群优化自整定法(SSAPSO)性能。最终确定PID最佳控制参数为比例系数K_(p)=0.8759,积分系数K_(i)=0.02,微分系数K_(d)=4.3255。系统试验结果表明,在8 min的熟化过程中,每隔1 min采集当前熟化温度,由于熟化机与空气直接对流换热,其温度稳定在(99±1.5)℃范围内,熟化温度平均相对误差小于1.2%、变异系数小于1.3%,基本实现了熟化过程中自动化精准高效控温的目的。 展开更多
关键词 白胡椒初加工生产线 熟化温度 粒子群优化算法 麻雀搜索算法 PID控制
在线阅读 下载PDF
基于果蝇协同算法求解双目标混装柔性作业车间分批调度问题
9
作者 郭晨 曾嘉怡 杨志杰 《计算机应用研究》 北大核心 2025年第7期2072-2079,共8页
对于多产品混装柔性生产模式,研究生产、运输、库存、装配各环节密切联系的混装柔性作业车间分批调度问题。以最小化最大完工时间和总成本为目标建立模型,提出双层联动的多目标混合算法:多目标粒子群算法联动果蝇协同搜索算法,外层使用... 对于多产品混装柔性生产模式,研究生产、运输、库存、装配各环节密切联系的混装柔性作业车间分批调度问题。以最小化最大完工时间和总成本为目标建立模型,提出双层联动的多目标混合算法:多目标粒子群算法联动果蝇协同搜索算法,外层使用计算最佳分批策略,内层计算策略下的最优调度方案并转换为适应度值反馈给外层,以此兼顾算法优势提高解的性能。其中果蝇协同搜索算法改进传统果蝇算法,加入协同搜索过程增强优化,采用改进的优先操作交叉和多点保存交叉,分别实现作业顺序搜索和机器分配。最后结合医疗器械企业实际生成10组算例进行广泛实验,与多种相关已有算法对比,果蝇协同搜索算法收敛速度快,前沿解分布均匀,表现更为突出。该研究为解决混装柔性作业车间分批调度问题提供新的有效方案极具实用价值。 展开更多
关键词 混装柔性作业车间 双层联动 分批策略 果蝇协同搜索算法
在线阅读 下载PDF
基于语义相似度与改进PSO算法的云制造能力需求模型与匹配策略研究
10
作者 李晓波 郭银章 《现代制造工程》 北大核心 2025年第6期30-44,共15页
针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能... 针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能力需求模型的基础上,采用领域本体树的概念提出了概念相似度、句子相似度和数值相似度的计算方法,实现了基于语义相似度的云制造能力需求智能化服务搜索;然后,针对云制造能力的服务组合问题,在分析了制造能力服务质量(Quality of Service,QoS)属性的基础上,采用层次分析法(Analytic Hierarchy Process,AHP)将各个属性进行归一化求和,给出了一种基于改进PSO算法的服务组合方法;最后,通过实验对比发现所提出的方法优于现有方法并实现了云制造能力需求智能匹配原型系统。 展开更多
关键词 云制造能力 任务需求 搜索匹配 服务组合 语义相似度 改进粒子群优化算法
在线阅读 下载PDF
基于储能蓄电池和柴油发电机的微电网经济优化运行策略
11
作者 李战明 王妮儿 《兰州理工大学学报》 北大核心 2025年第4期72-80,共9页
为提高风-光-柴-储独立运行微电网的经济效益,提出一种基于储能蓄电池和柴油发电机两种主控电源动态交替运行的独立微电网经济优化运行策略.首先,基于可再生能源出力预测、负荷需求预测等基础数据,选择合理的运行模式,建立了一种包含燃... 为提高风-光-柴-储独立运行微电网的经济效益,提出一种基于储能蓄电池和柴油发电机两种主控电源动态交替运行的独立微电网经济优化运行策略.首先,基于可再生能源出力预测、负荷需求预测等基础数据,选择合理的运行模式,建立了一种包含燃料消耗成本、系统运行与维护成本等因素的最小化系统综合运行成本目标.其次,构建结合功率平衡约束、分布式发电单元运行约束等条件下的独立微电网经济运行优化模型,并提出一种基于秃鹰搜索算法(BES)的模型求解方案.最后,通过算例分析验证了所提出的优化运行策略可有效提高微电网系统的经济效益. 展开更多
关键词 微电网 运行策略 经济优化 秃鹰搜索算法
在线阅读 下载PDF
多目标约束下绿色柔性车间机器与AGV集成调度优化
12
作者 张天瑞 朱广豪 《组合机床与自动化加工技术》 北大核心 2025年第3期232-240,共9页
为降低柔性制造车间加工过程和运输过程的综合能耗,建立了绿色柔性作业车间集成调度问题的双目标优化模型。提出了一种改进型多目标樽海鞘群算法求解,该算法基于工序、机器和AGV三层编码并采用反向学习的初始化策略提高初始种群的质量,... 为降低柔性制造车间加工过程和运输过程的综合能耗,建立了绿色柔性作业车间集成调度问题的双目标优化模型。提出了一种改进型多目标樽海鞘群算法求解,该算法基于工序、机器和AGV三层编码并采用反向学习的初始化策略提高初始种群的质量,采用基于快速非支配排序和外部存储库的选择操作结合改进的交叉变异算子进行非支配解集更新,保证非劣解均匀分布;设置了3种领域结构,基于变领域搜索算法作对存储库中非支配解执行变邻域搜索,提高了局部搜索能力。通过测试算例仿真实验和案例应用,证明了所提算法在解决柔性制造车间机器与AGV集成调度多目标优化问题的有效性。 展开更多
关键词 绿色柔性车间 集成调度 多目标优化 樽海鞘群算法 变领域搜索
在线阅读 下载PDF
改进蜣螂优化算法的入侵检测特征选择
13
作者 刘涛 王愉露 《计算机工程与设计》 北大核心 2025年第7期1936-1943,共8页
针对网络入侵检测场景下蜣螂优化算法(DBO)收敛精度不高、易陷入局部最优等问题,提出一种混合策略改进的蜣螂优化算法(LSDBO)。利用Cubic映射初始化种群,使用反向学习策略与Levy螺旋搜索策略提升算法搜索能力,使用高斯与柯西变异扰动策... 针对网络入侵检测场景下蜣螂优化算法(DBO)收敛精度不高、易陷入局部最优等问题,提出一种混合策略改进的蜣螂优化算法(LSDBO)。利用Cubic映射初始化种群,使用反向学习策略与Levy螺旋搜索策略提升算法搜索能力,使用高斯与柯西变异扰动策略和贪婪策略提升算法的全局寻优能力。实验结果表明,在CIC-IDS2017数据集上的特征选择实验中,算法平均保留了8.1个特征,最优特征子集的平均准确率达到了98.01%,验证该算法在降低特征的同时可以确保准确率。 展开更多
关键词 蜣螂优化算法 混沌映射 螺旋搜索 入侵检测 特征选择 对立学习策略 高斯与柯西变异扰动
在线阅读 下载PDF
基于改进粒子群算法的6R机械臂时间最优轨迹规划 被引量:2
14
作者 王迈新 闫莉 李雨菲 《制造技术与机床》 北大核心 2025年第2期36-42,共7页
为了提高机械臂的工作效率和稳定性,提出一种改进粒子群算法(particle swarm optimization,PSO)的时间最优5次B样条插值轨迹优化算法。以UR10机械臂为研究对象,首先,利用5次B样条曲线对给定的轨迹点进行插值;其次,针对传统PSO算法存在... 为了提高机械臂的工作效率和稳定性,提出一种改进粒子群算法(particle swarm optimization,PSO)的时间最优5次B样条插值轨迹优化算法。以UR10机械臂为研究对象,首先,利用5次B样条曲线对给定的轨迹点进行插值;其次,针对传统PSO算法存在求解精度低、易陷入局部最优的缺陷,调整算法中的惯性权重和认知因子,使其随着迭代次数的增加而动态改变数值大小,进而提高算法前期全局搜索能力和后期局部搜索能力;最后,通过3种测试函数测试和仿真实验验证,结果表明,改进后的PSO算法的求解精度提升,可以有效提高机械臂的工作效率。 展开更多
关键词 机械臂 5次B样条曲线 粒子群算法 时间最优轨迹规划 全局搜索能力 局部搜索能力
在线阅读 下载PDF
基于改进沙猫群优化算法的无人机路径规划 被引量:1
15
作者 邱少明 张博 《兵器装备工程学报》 北大核心 2025年第3期173-181,共9页
为了提高无人机在复杂战场环境中路径规划的能力,基于沙猫群优化算法(SCSO),提出了一种新型路径规划算法。将Iterative混沌映射融入种群初始化,得到分布更加均匀的种群。在搜索阶段和开发阶段,分别利用了三角形游荡策略和Levy飞行机制,... 为了提高无人机在复杂战场环境中路径规划的能力,基于沙猫群优化算法(SCSO),提出了一种新型路径规划算法。将Iterative混沌映射融入种群初始化,得到分布更加均匀的种群。在搜索阶段和开发阶段,分别利用了三角形游荡策略和Levy飞行机制,提升算法的搜索范围与精度。再将一种消除和更新机制融入算法的选择阶段,提出了新型路径规划算法(MSCSO)。选择5种对比算法,使用了CEC2022测试函数、Wilcoxon秩和检测对算法性能进行测试。模拟了三维复杂环境,比较了路径规划能力。在真实环境的仿真中,验证了路径规划能力。实验结果表明,MSCSO具有更优秀的路径规划能力。 展开更多
关键词 无人机 路径规划 沙猫群优化算法 三角形游荡策略 Levy飞行机制
在线阅读 下载PDF
3D打印混凝土流动度稳定控制策略设计
16
作者 韩怡萱 马宗方 +3 位作者 贺静 宋琳 刘超 崔衡 《工程设计学报》 北大核心 2025年第3期308-315,共8页
3D打印混凝土流动度的稳定控制对于提高打印构件的成形质量具有重要意义。现有的打印精度提升途径主要集中在混凝土材料特性优化、打印设备机械结构优化和打印工艺参数优化等方面。但事实上,混凝土流动度稳定与否直接影响打印质量。为此... 3D打印混凝土流动度的稳定控制对于提高打印构件的成形质量具有重要意义。现有的打印精度提升途径主要集中在混凝土材料特性优化、打印设备机械结构优化和打印工艺参数优化等方面。但事实上,混凝土流动度稳定与否直接影响打印质量。为此,从控制角度出发,首先分析了混凝土流动度与打印精度的关系,提出了3D打印混凝土流动度稳定控制系统结构;然后,设计了一种基于PSO (particle swarm optimization,粒子群优化)算法的PID (proportional-integral-derivative,比例-积分-微分)控制策略,可实现控制参数实时在线多次优化,提升了3D打印混凝土流动度稳定控制性能。最后,通过仿真分析和打印实验验证了所设计的PSO-PID控制策略的可行性和优越性。仿真结果表明,PSO-PID控制策略可满足混凝土流动度稳定控制的要求;实验结果表明,PSO-PID控制策略能保证混凝土连续、均匀地挤出,有效提升了打印构件的成形精度。所提出的方法通过实时控制机械参数实现了混凝土流动度的稳定控制,可为3D打印混凝土技术的工程应用提供技术支撑。 展开更多
关键词 3D打印混凝土 流动度 粒子群优化算法 PID控制策略 打印精度
在线阅读 下载PDF
单纯形法引导的自适应沙猫群优化算法及应用
17
作者 罗文涛 钱谦 +3 位作者 潘家文 张晓丽 冯勇 李英娜 《小型微型计算机系统》 北大核心 2025年第8期1869-1877,共9页
为了克服沙猫优化算法(SCSO)在高维优化问题上,易陷入局部最优和收敛精度差的问题,提出了一种单纯形法引导的自适应沙猫群优化算法(SASCSO).首先,采用了一种自适应围捕策略,使沙猫个体随机出现在自适应控制的算法搜索边界内,帮助算法逃... 为了克服沙猫优化算法(SCSO)在高维优化问题上,易陷入局部最优和收敛精度差的问题,提出了一种单纯形法引导的自适应沙猫群优化算法(SASCSO).首先,采用了一种自适应围捕策略,使沙猫个体随机出现在自适应控制的算法搜索边界内,帮助算法逃逸局部陷阱.其次,利用单纯形法引导较差个体构建几何搜索路径以提升算法的搜索能力.与其他对比算法相比,SASCSO在100维度的CEC2017基准函数测试集的综合优胜率为75.86%,结合非参数分析表明该算法是解决高维复杂优化问题的可行方法.此外,将SASCSO应用于三维无线传感器网络覆盖和复杂环境下无人机航径优化问题,结果显示SASCSO在两个实际问题上均提供了最优的方案,验证了SASCSO在实际优化中的适用性和优越性. 展开更多
关键词 沙猫群优化算法 自适应围捕策略 单纯形法 无线传感器网络覆盖 无人机航径优化
在线阅读 下载PDF
基于改进粒子群算法的焊接缺陷三阈值图像分割方法
18
作者 罗威 吴超华 +2 位作者 肖俊 蔡舒 史晓亮 《科学技术与工程》 北大核心 2025年第22期9463-9470,共8页
为解决焊接缺陷图像分割的结果出现失真、分割效果差的问题,以轮辋生产过程中的裂纹和气孔焊接缺陷图像为研究对象,提出了一种基于模拟退火(simulated annealing,SA)策略改进粒子群算法(improved particle swarm optimization,IPSO)的... 为解决焊接缺陷图像分割的结果出现失真、分割效果差的问题,以轮辋生产过程中的裂纹和气孔焊接缺陷图像为研究对象,提出了一种基于模拟退火(simulated annealing,SA)策略改进粒子群算法(improved particle swarm optimization,IPSO)的焊接缺陷三阈值图像分割方法。首先通过灰度值、平均灰度值和中值灰度值建立图像的三维最大类间方差(Otsu)模型;其次引入自适应惯性权重和非对称学习因子并融入SA策略增强算法求解效率和跳出局部最优的能力;最后利用SA-IPSO算法优化三维Otsu模型求解得到最佳阈值对应的缺陷分割图像。采用不同算法和模型对焊接缺陷图像进行分割,结果表明:对于裂纹和气孔焊接缺陷图像,本文算法在峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)评价指标上均优于对比算法,在加快算法收敛的同时避免分割结果失真,提高了分割精度。 展开更多
关键词 阈值分割 三维Otsu 粒子群优化算法 模拟退火策略 焊接缺陷
在线阅读 下载PDF
基于PSO算法的玉米电控排种系统的设计与试验
19
作者 张宇 赵胜雪 +4 位作者 李衣菲 柳青 周轶楠 高帅南 邓炜航 《农机化研究》 北大核心 2025年第11期135-141,共7页
目前,玉米播种设备智能化水平相对较低,由于地轮和链条驱动排种器会出现地轮打滑、链条跳动,且已有的控制器控制策略精度较低,使得播种合格率降低。为此,设计了一款电控播种系统。该系统采用雷达测速仪采集机车前进速度,自动调节电机转... 目前,玉米播种设备智能化水平相对较低,由于地轮和链条驱动排种器会出现地轮打滑、链条跳动,且已有的控制器控制策略精度较低,使得播种合格率降低。为此,设计了一款电控播种系统。该系统采用雷达测速仪采集机车前进速度,自动调节电机转速;采用双闭环控制方法,利用PSO(粒子群算法)算法和模糊算法相结合的控制策略对PID参数进行整定优化,提高了系统精度和响应速度;同时,分别对传统PID控制系统和基于粒子群算法的模糊PID控制系统进行控制精度试验和田间试验,该系统的平均误差为0.622%,较传统方法降低了1.601%。田间试验表明:作业时,平均播种合格指数为93.99%,较传统PID控制方法高3.2%,证明了使用模糊PID控制较传统PID控制有着更良好的播种效果。 展开更多
关键词 播种机 电控排种系统 粒子群算法 模糊算法 控制策略 玉米
在线阅读 下载PDF
不同优化算法在林分经营中的应用与对比研究
20
作者 罗隽泳 金星姬 +1 位作者 Timo Pukkala 郝元朔 《西南林业大学学报(自然科学)》 北大核心 2025年第3期184-193,共10页
引入一种控制参数少、寻优机制强的人工蜂群算法(ABC),以红松人工林为例基于净现值(NPV)最大为目标优化林分经营措施,并同Hooke&Jeeves直接搜索算法、差分进化算法(DE)、进化策略算法(ES)和粒子群优化算法(PSO)进行对比评估,探讨AB... 引入一种控制参数少、寻优机制强的人工蜂群算法(ABC),以红松人工林为例基于净现值(NPV)最大为目标优化林分经营措施,并同Hooke&Jeeves直接搜索算法、差分进化算法(DE)、进化策略算法(ES)和粒子群优化算法(PSO)进行对比评估,探讨ABC算法参数配置及各算法特性。通过模拟器推演标准红松人工林的生长及经营过程,以NPV为经营目标,遍历ABC算法参数组合,确定最优参数。结果表明:根据ABC算法参数寻优结果显示,随着蜂群规模大小增加NPV呈上升趋势,当蜂群大小为90时NPV均高于385500元/hm^(2)。NPV均值的排序为PSO>ABC>DE>ES>HJ,变异系数的排序为DE<PSO<ABC<ES<HJ;当仅将群体大小减少到5,而其他参数保持最优时,NPV均值排序为ABC>DE>PSO>ES,变异系数排序为DE<ABC<PSO<ES。本研究系统评估了5种林分经营优化算法在最优参数配置下的性能,整体上,DE、PSO和ABC算法均表现优异且能维持候选解的多样性,在处理复杂优化问题时,ABC算法的执行效率颇具优势。通过对比,本研究评估了5种算法优化经营措施的可行性,为ABC算法在林分经营优化中的应用提供了参考。 展开更多
关键词 红松 人工林 经营优化 人工蜂群算法 直接搜索算法
在线阅读 下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部