Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the dat...Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the data of power demand from the year 1980 to 2005 in China, a nonlinear network model was obtained on the relationship between power demand and the factors which had impacts on it, and thus the above proposed method was verified. Meanwhile, the results were compared to those of neural network optimized by genetic algorithm. The results show that this method is superior to neural network optimized by genetic algorithm and is one of the effective ways of time series forecast.展开更多
An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learnin...An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function.展开更多
A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite ima...A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite image. The method is based on BPNN. First, three groups learning samples with different resolutions are obtained according to image observation model, and then vector mappings are respectively used to those three group learning samples to speed up the convergence of BPNN, at last, three times consecutive training are carried on the BPNN. Training samples used in each step are of higher resolution than those used in the previous steps, so the increasing weights store a great amount of information for SRR, and network performance and generalization ability are improved greatly. Simulation and generalization tests are carried on the well-trained three-step-training NN respectively, and the reconstruction results with higher resolution images verify the effectiveness and validity of this method.展开更多
A new nonlinear image filter using fuzzy neural network based on genetic algorithm is proposed. The learning of network parameters is performed by genetic algorithm with the efficient binary encoding scheme. In the fo...A new nonlinear image filter using fuzzy neural network based on genetic algorithm is proposed. The learning of network parameters is performed by genetic algorithm with the efficient binary encoding scheme. In the following, fuzzy reasoning embedded in the network aims at restoring noisy pixels without degrading the quality of fine details. It is shown by experiments that the filter is very effective in removing impulse noise and significantly outperforms conventional filters.展开更多
The automatic control of cleaning need to be based on the total amount of manure in the house. Therefore, this article established a prediction model for the total amount of manure in a pig house and took the number o...The automatic control of cleaning need to be based on the total amount of manure in the house. Therefore, this article established a prediction model for the total amount of manure in a pig house and took the number of pigs in the house, age, feed intake,feeding time, the time when the ammonia concentration increased the fastest and the daily fixed cleaning time as variable factors for modelling, so that the model could obtain the current manure output according to the real-time input of time. A Backpropagation(BP) neural network was used for training. The cross-validation method was used to select the best hyperparameters, and the genetic algorithm(GA), particle swarm optimization(PSO) algorithm and mind evolutionary algorithm(MEA) were selected to optimize the initial network weights. The results showed that the model could predict the amount of manure in real-time according to the model input. After the cross-validation method determined the hyperparameters, the GA, PSO and MEA were used to optimize the manure prediction model. The GA had the best average performance.展开更多
基金Project(70373017) supported by the National Natural Science Foundation of China
文摘Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the data of power demand from the year 1980 to 2005 in China, a nonlinear network model was obtained on the relationship between power demand and the factors which had impacts on it, and thus the above proposed method was verified. Meanwhile, the results were compared to those of neural network optimized by genetic algorithm. The results show that this method is superior to neural network optimized by genetic algorithm and is one of the effective ways of time series forecast.
基金Project(50579101) supported by the National Natural Science Foundation of China
文摘An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function.
文摘A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite image. The method is based on BPNN. First, three groups learning samples with different resolutions are obtained according to image observation model, and then vector mappings are respectively used to those three group learning samples to speed up the convergence of BPNN, at last, three times consecutive training are carried on the BPNN. Training samples used in each step are of higher resolution than those used in the previous steps, so the increasing weights store a great amount of information for SRR, and network performance and generalization ability are improved greatly. Simulation and generalization tests are carried on the well-trained three-step-training NN respectively, and the reconstruction results with higher resolution images verify the effectiveness and validity of this method.
文摘A new nonlinear image filter using fuzzy neural network based on genetic algorithm is proposed. The learning of network parameters is performed by genetic algorithm with the efficient binary encoding scheme. In the following, fuzzy reasoning embedded in the network aims at restoring noisy pixels without degrading the quality of fine details. It is shown by experiments that the filter is very effective in removing impulse noise and significantly outperforms conventional filters.
基金the National Key Research and Development Program (2018YFD0500704-03)Proiect of Ministry of Agriculture and Rura Affairs (SK201707)。
文摘The automatic control of cleaning need to be based on the total amount of manure in the house. Therefore, this article established a prediction model for the total amount of manure in a pig house and took the number of pigs in the house, age, feed intake,feeding time, the time when the ammonia concentration increased the fastest and the daily fixed cleaning time as variable factors for modelling, so that the model could obtain the current manure output according to the real-time input of time. A Backpropagation(BP) neural network was used for training. The cross-validation method was used to select the best hyperparameters, and the genetic algorithm(GA), particle swarm optimization(PSO) algorithm and mind evolutionary algorithm(MEA) were selected to optimize the initial network weights. The results showed that the model could predict the amount of manure in real-time according to the model input. After the cross-validation method determined the hyperparameters, the GA, PSO and MEA were used to optimize the manure prediction model. The GA had the best average performance.