Based on the polynomial interpolation, a new finite difference (FD) method in solving the full-vectorial guidedmodes for step-index optical waveguides is proposed. The discontinuities of the normal components of the...Based on the polynomial interpolation, a new finite difference (FD) method in solving the full-vectorial guidedmodes for step-index optical waveguides is proposed. The discontinuities of the normal components of the electric field across abrupt dielectric interfaces are considered in the absence of the limitations of scalar and semivectorial approximation, and the present PD scheme can be applied to both uniform and non-uniform mesh grids. The modal propagation constants and field distributions for buried rectangular waveguides and optical rib waveguides are presented. The hybrid nature of the vectorial modes is demonstrated and the singular behaviours of the minor field components in the corners are observed. Moreover, solutions are in good agreement with those published early, which tests the validity of the present approach.展开更多
This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half...This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half-width of Caussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed.展开更多
This paper derives the dispersion relation of microring coupled-resonator optical waveguides (CROWs) without any approximation by using the transfer matrix method. Based on the established dispersion relation of CRO...This paper derives the dispersion relation of microring coupled-resonator optical waveguides (CROWs) without any approximation by using the transfer matrix method. Based on the established dispersion relation of CROWs it obtains the slow group velocity and dispersion coefficient. It finds that the effect Of dispersion on optical pulses can be adjusted to balance the effect of nonlinearity by changing coupling coefficient or loss, so optical soliton with group delay can be obtained in microring CROWs. The optical soliton with group delay is of great significance for applications of microring CROWs in delay lines and optical buffers of future all-optical communication systems.展开更多
Terbium gallium garnet(Tb_(3)Ga_(5)O_(12),TGG)crystal can be used to fabricate various magneto-optical devices due to its optimal Faraday effect.In this work,400-keV He^(+)ions with a fluence of 6.0×10^(16)ions/c...Terbium gallium garnet(Tb_(3)Ga_(5)O_(12),TGG)crystal can be used to fabricate various magneto-optical devices due to its optimal Faraday effect.In this work,400-keV He^(+)ions with a fluence of 6.0×10^(16)ions/cm^(2)are irradiated into the TGG crystal for the planar waveguide formation.The precise diamond blade dicing with a rotation speed of 2×10^(4)rpm and a cutting velocity of 0.1 mm/s is performed on the He^(+)-implanted TGG planar waveguide for the ridge structure.The darkmode spectrum of the He^(+)-implanted TGG planar waveguide is measured by the prism-coupling method,thereby obtaining the relationship between the reflected light intensity and the effective refractive index.The refractive index profile of the planar waveguide is reconstructed by the reflectivity calculation method.The near-field light intensity distribution of the planar waveguide and the ridge waveguide are recorded by the end-face coupling method.The He^(+)-implanted and diamond blade-diced TGG crystal planar and ridge waveguides are promising candidates for integrated magneto-optical devices.展开更多
This paper presents the development of a bioinspired multifunctional flexible optical sensor(BioMFOS)as an ultrasensitive tool for force(intensity and location)and orientation sensing.The sensor structure is bioinspir...This paper presents the development of a bioinspired multifunctional flexible optical sensor(BioMFOS)as an ultrasensitive tool for force(intensity and location)and orientation sensing.The sensor structure is bioinspired in orb webs,which are multifunctional devices for prey capturing and vibration transmission.The multifunctional feature of the structure is achieved by using transparent resins that present both mechanical and optical properties for structural integrity and strain/deflection transmission as well as the optical signal transmission properties with core/cladding configuration of a waveguide.In this case,photocurable and polydimethylsiloxane(PDMS)resins are used for the core and cladding,respectively.The optical transmission,tensile tests,and dynamic mechanical analysis are performed in the resins and show the possibility of light transmission at the visible wavelength range in conjunction with high flexibility and a dynamic range up to 150 Hz,suitable for wearable applications.The BioMFOS has small dimensions(around 2 cm)and lightweight(0.8 g),making it suitable for wearable application and clothing integration.Characterization tests are performed in the structure by means of applying forces at different locations of the structure.The results show an ultra-high sensitivity and resolution,where forces in theμN range can be detected and the location of the applied force can also be detected with a sub-millimeter spatial resolution.Then,the BioMFOS is tested on the orientation detection in 3D plane,where a correlation coefficient higher than 0.9 is obtained when compared with a gold-standard inertial measurement unit(IMU).Furthermore,the device also shows its capabilities on the movement analysis and classification in two protocols:finger position detection(with the BioMFOS positioned on the top of the hand)and trunk orientation assessment(with the sensor integrated on the clothing).In both cases,the sensor is able of classifying the movement,especially when analyzed in conjunction with preprocessing and clustering techniques.As another wearable application,the respiratory rate is successfully estimated with the BioMFOS integrated into the clothing.Thus,the proposed multifunctional device opens new avenues for novel bioinspired photonic devices and can be used in many applications of biomedical,biomechanics,and micro/nanotechnology.展开更多
This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by ...This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by chemical method and their outsides are peeled to form particles of irregular distribution and they differ in size, so the slight disturbance range of stochastic wall are formed in fibers. According to the characteristics of power loss of waveguide mode caused by slight disturbance of stochastic wall and radiative mode transmission, the range of slight disturbance of stochastic wall may be served as the sensitive range of the sensor. On the basis of theory of slight disturbance of stochastic wall of planar optical waveguide, the relation between the corrosion time and the opposite power loss by experiments is investigated. In this paper, the measurement results of object of SIFORS are also presented. The results show that the optical sensor technique may be used in the damage evaluation of an aircraft.展开更多
Carbon ion irradiation and precise diamond blade dicing are applied to fabricate Nd∶GdCOB ridge waveguides.The propagation properties of the fabricated Nd∶GdCOB waveguides are investigated through experiments and th...Carbon ion irradiation and precise diamond blade dicing are applied to fabricate Nd∶GdCOB ridge waveguides.The propagation properties of the fabricated Nd∶GdCOB waveguides are investigated through experiments and theoret-ical analysis.Micro-Raman analysis reveals that the Nd∶GdCOB crystal lattice expands during the irradiation process.Micro-second harmonic spectroscopic analysis suggests that the original nonlinear properties of the Nd∶GdCOB crystal are greatly enhanced within the waveguide volume.Under pulsed 1064 nm laser pumping,second harmonic generation(SHG)at 532 nm has been achieved in the fabricated waveguides.The maximum SHG conversion efficiencies are determined to be~8.32%·W^(-1) and~22.36%·W^(-1) for planar and ridge waveguides,respectively.展开更多
Optical waveguides are far more than mere connecting elements in integrated optical systems and circuits.Benefiting from their high optical confinement and miniaturized footprints,waveguide structures established base...Optical waveguides are far more than mere connecting elements in integrated optical systems and circuits.Benefiting from their high optical confinement and miniaturized footprints,waveguide structures established based on crystalline materials,particularly,are opening exciting possibilities and opportunities in photonic chips by facilitating their on-chip integration with different functionalities and highly compact photonic circuits.Femtosecond-laser-direct writing(FsLDW),as a true three-dimensional(3D)micromachining and microfabrication technology,allows rapid prototyping of on-demand waveguide geometries inside transparent materials via localized material modification.The success of FsLDW lies not only in its unsurpassed aptitude for realizing 3D devices but also in its remarkable material-independence that enables cross-platform solutions.This review emphasizes FsLDW fabrication of waveguide structures with 3D layouts in dielectric crystals.Their functionalities as passive and active photonic devices are also demonstrated and discussed.展开更多
We reported a chalcogenide glass-based rib waveguide fabricated using photolithography and dry etching method. A commercial software(COMSOL Multiphysics) was used to optimize the waveguide structure and the distributi...We reported a chalcogenide glass-based rib waveguide fabricated using photolithography and dry etching method. A commercial software(COMSOL Multiphysics) was used to optimize the waveguide structure and the distribution of the fundamental modes in the waveguide based on the complete vector finite component. We further employed thermal annealing to optimize the surface and sidewalls of the rib waveguides. It was found that the optimal annealing temperature for Ge As Se S films is 220℃, and the roughness of the films could be significantly reduced by annealing. The zero-dispersion wavelength(ZDW) could be shifted to a short wavelength around ~2.1 μm via waveguide structural optimization, which promotes supercontinuum generation with a short wavelength pump laser source. The insertion loss of the waveguides with cross-sectional areas of 4.0 μm×3.5 μm and 6.0 μm×3.5 μm was measured using lens fiber and the cut-back method. The propagation loss of the 220℃ annealed waveguides could be as low as 1.9 d B/cm at 1550 nm.展开更多
Optical scattering loss coefficient of muhimode rectangular waveguide is analyzed in this work. First, the effective refrac tive index and the mode field distribution of waveguide modes are obtained using the Marcatil...Optical scattering loss coefficient of muhimode rectangular waveguide is analyzed in this work. First, the effective refrac tive index and the mode field distribution of waveguide modes are obtained using the Marcatili method. The influence on scattering loss coefficient by waveguide surface roughness is then analyzed. Finally, the mode coupling efficiency for the SMFOpticalWaveguide (SOW) structure and MMFOptical Waveguide (MOW) structure are presented. The total scatter ing loss coefficient depends on modes scattering loss coeffi cients and the mode coupling efficiency between fiber and waveguide. The simulation results show that the total scatter ing loss coefficient for the MOW structure is affected more strongly by surface roughness than that for the SOW struc ture. The total scattering loss coefficient of waveguide decreas es from 3.97 x 10^-2 dB/cm to 2.96 x 10^-4 dB/cm for the SOW structure and from 5.24 - 10^-2 dB/cm to 4.7 x 10^-4 dB/ cm for the MOW structure when surface roughness is from 300nm to 20nm and waveguide length is 100cm.展开更多
We present a silicon slot waveguide with metallic gratings embedded on the silicon surface in the slot region. The dependence of the optical coupling between two silicon wires on the width of the metal gap and the slo...We present a silicon slot waveguide with metallic gratings embedded on the silicon surface in the slot region. The dependence of the optical coupling between two silicon wires on the width of the metal gap and the slot size are studied in detail. The results show that the optical field in the slot region with metallic gratings is significantly enhanced compared with the traditional slot waveguide due to the surface plasmon polaritons coupling on metallic gratings. The extraordinary optical confinement is attributed to the low effective dielectric constant of metallic gratings. The effective dielectric constant decreases with the increasing wavelength, and reaches the minimum when the width of the metal gap is about 0.01 times the wavelength.展开更多
Recently, theoretical and experimental nano-sized fundamental devices for optical circuits have been proposed at the single-photon level. The assembly of a realistic optical circuit is now a reality. In this work, we ...Recently, theoretical and experimental nano-sized fundamental devices for optical circuits have been proposed at the single-photon level. The assembly of a realistic optical circuit is now a reality. In this work, we introduce a single-photon interconnector composed of two individual nanowires and an optical N-type four-level emitter that can turn the optical connection on and off optically. Because of dipole-induced transmission at the single-photon level, a single photon can travel between the two nanowires reciprocally, which guarantees its application as an all-optical interconnector.展开更多
We propose a frequency-tunable router of single photons with high routing efficiency, which is constructed by two waveguides mediately linked by a single-mode whispering gallery resonator with a driven three-level emi...We propose a frequency-tunable router of single photons with high routing efficiency, which is constructed by two waveguides mediately linked by a single-mode whispering gallery resonator with a driven three-level emitter. Quantum routing probability in the output port is obtained via the real-space Hamiltonian. By adjusting the resonator–emitter coupling and the drive, the desired continuous central frequencies for the resonance peaks of routing photons can be manipulated nearly linearly, with the assistance of Rabi splitting effect and optical Stark shift. The proposed routing system may provide potential applications in designing other frequency-modulation quantum optical devices, such as multiplexers,filters, and so on.展开更多
We theoretically investigate coherent scattering of single photons and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system.Using the real-space Hamiltonian,analytical express...We theoretically investigate coherent scattering of single photons and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system.Using the real-space Hamiltonian,analytical expressions are derived for the transport spectra scattered by these two giant atoms with four azimuthal angles.Fano-like resonance can be exhibited in the scattering spectra by adjusting the azimuthal angle difference.High concurrence of the entangled state for two atoms can be implemented in a wide angle-difference range,and the entanglement of the atomic states can be switched on/off by modulating the additional azimuthal angle differences from the giant atoms.This suggests a novel handle to effectively control the single-photon scattering and quantum entanglement.展开更多
Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have bee...Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have been well introduced.The definition, measurement methods and the evolution process of the dynamic topological photonics are demonstrated to better understand the physical diagram. This review is meant to bring the readers a different perspective on topological photonics, grasp the advanced progress of dynamic topology, and inspire ideas about future prospects.展开更多
We introduce a modified surface plasmonic waveguide with an arc slot. The dependences of distribution of energy flux density, effective index, propagation length and mode area of the symmetric mode supported by this w...We introduce a modified surface plasmonic waveguide with an arc slot. The dependences of distribution of energy flux density, effective index, propagation length and mode area of the symmetric mode supported by this waveguide on geometrical parameters and working wavelength are analysed by using the finite-difference frequency-domain (FDFD) method. Results show that the energy flux density distributes mainly in four corners which are formed by two arcs, and the closer to the corners it is, the stronger the energy flux density will be. The effective index, the propagation length and the mode area are influenced by geometrical parameters, including the width, the thickness and the arc radius of the surface plasmonic waveguide, as well as the working wavelength. It has been shown that the surface plasmonic waveguide with an arc slot has better propagation properties than the surface plasmonic waveguide with a straight slot. This work may be helpful for applying the slot surface plasmonic waveguide to integrated photonics.展开更多
A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first ...A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.展开更多
We fnrther study theoretically the properties of switching and Fano resonance in a hybrid nanosystem consisting of two quantum dots (QDs) and a metal nanowire via exciton-plasmon interaction. The transmission of the...We fnrther study theoretically the properties of switching and Fano resonance in a hybrid nanosystem consisting of two quantum dots (QDs) and a metal nanowire via exciton-plasmon interaction. The transmission of the single plasmon can be switched on or off in a wide-frequency region by adjusting the transition frequencies of the QDs and the phase of the propagating plasmon. Specifically, the dynamical mechanism of Fano-type transmission is further revealed and analyzed in detail.展开更多
This paper presents a novel in-plane photonic crystal channel drop filter. The device is composed of a resonant cavity sandwiched by two parallel waveguides. The cavity has two resonant modes with opposite symmetries....This paper presents a novel in-plane photonic crystal channel drop filter. The device is composed of a resonant cavity sandwiched by two parallel waveguides. The cavity has two resonant modes with opposite symmetries. Tuning these two modes into degeneracy causes destructive interference in bus waveguide, which results in high forward drop efficiency at the resonant wavelength. From the result of numerical analysis by using two-dimensional finite-difference time-domain method, the channel drop filter has a drop efficiency of 96% and a Q value of over 3000, which can be used in dense wavelength division multiplexing systems.展开更多
In this paper, two kinds of modified surface plasmonic waveguides formed by nanometric parallel lines are proposed. The finite-difference frequency-domain method is used to study propagation properties of the fundamen...In this paper, two kinds of modified surface plasmonic waveguides formed by nanometric parallel lines are proposed. The finite-difference frequency-domain method is used to study propagation properties of the fundamental mode supported by these surface plasmonie waveguide structures. Results show that the transverse magnetic field of the fundamental mode is mainly distributed in the face to face region formed by two rods. With the same geometrical parameters and the same working wavelength of 632.8 nm, in the case of rods with a triangular cross-section, the degree of localization of field is strong, i.e. the mode area is small, but the fraction of the modal power in the metal increases, so the effective index increases and the propagation length of the mode decreases. With the same geometrical parameters, relative to the case of a working wavelength of 632.8 nm, when working wavelength is large, the mode area of transverse magnetic field distribution is large, i.e. the degree of localization of field is weak, and the interaction of field and silver is weak too, then the effective index decreases, so the propagation length increases. The rounded radii of rods have a great influence on the performance of the surface plasmonic waveguides with rounded triangular cross-sections, but have little influence on the performance of surface plasmonic waveguides with rounded square cross-sections. Since the distribution of transverse magnetic field, effective index, propagation length and the mode area can be adjusted by the geometrical parameters, this kind of modified surface plasmonic waveguide can be applied to the field of photonic device integration and sensors.展开更多
文摘Based on the polynomial interpolation, a new finite difference (FD) method in solving the full-vectorial guidedmodes for step-index optical waveguides is proposed. The discontinuities of the normal components of the electric field across abrupt dielectric interfaces are considered in the absence of the limitations of scalar and semivectorial approximation, and the present PD scheme can be applied to both uniform and non-uniform mesh grids. The modal propagation constants and field distributions for buried rectangular waveguides and optical rib waveguides are presented. The hybrid nature of the vectorial modes is demonstrated and the singular behaviours of the minor field components in the corners are observed. Moreover, solutions are in good agreement with those published early, which tests the validity of the present approach.
基金Project supported by Natural Science Foundation of the Department of Science & Technology of Fujian Province of China (GrantNo 2007F5040)
文摘This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half-width of Caussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60272075 and 60478014)the National High Technology Research and Development Program of China (Grant No 2007AA12Z112)partially supported by the program of excellent team in Harbin Institute of Technology,China
文摘This paper derives the dispersion relation of microring coupled-resonator optical waveguides (CROWs) without any approximation by using the transfer matrix method. Based on the established dispersion relation of CROWs it obtains the slow group velocity and dispersion coefficient. It finds that the effect Of dispersion on optical pulses can be adjusted to balance the effect of nonlinearity by changing coupling coefficient or loss, so optical soliton with group delay can be obtained in microring CROWs. The optical soliton with group delay is of great significance for applications of microring CROWs in delay lines and optical buffers of future all-optical communication systems.
基金Project supported by the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(Grant No.SJCX210274)the National Natural Science Foundation of China(Grant Nos.11405041 and 61905119)+1 种基金the Scientific Research Foundation for Youths Supported by Jiangxi Province Science Foundation,China(Grant No.20192BAB217015)the University Natural Science Research Project of Jiangsu Province,China(Grant No.19KJB140013)。
文摘Terbium gallium garnet(Tb_(3)Ga_(5)O_(12),TGG)crystal can be used to fabricate various magneto-optical devices due to its optimal Faraday effect.In this work,400-keV He^(+)ions with a fluence of 6.0×10^(16)ions/cm^(2)are irradiated into the TGG crystal for the planar waveguide formation.The precise diamond blade dicing with a rotation speed of 2×10^(4)rpm and a cutting velocity of 0.1 mm/s is performed on the He^(+)-implanted TGG planar waveguide for the ridge structure.The darkmode spectrum of the He^(+)-implanted TGG planar waveguide is measured by the prism-coupling method,thereby obtaining the relationship between the reflected light intensity and the effective refractive index.The refractive index profile of the planar waveguide is reconstructed by the reflectivity calculation method.The near-field light intensity distribution of the planar waveguide and the ridge waveguide are recorded by the end-face coupling method.The He^(+)-implanted and diamond blade-diced TGG crystal planar and ridge waveguides are promising candidates for integrated magneto-optical devices.
基金FAPES(320/2020 and 84336650)CNPq(304049/2019-0 and 427054/2018-4)+2 种基金Fundação para a Ciência e a Tecnologia(FCT)through the DigiAqua project-PTDC/EEIEEE/0415/2021.C.FCT through the CEECIND/00034/2018(iFish project)developed within the scope of the project i3N,UIDB/50025/2020&UIDP/50025/2020financed by national funds through the FCT/MEC.
文摘This paper presents the development of a bioinspired multifunctional flexible optical sensor(BioMFOS)as an ultrasensitive tool for force(intensity and location)and orientation sensing.The sensor structure is bioinspired in orb webs,which are multifunctional devices for prey capturing and vibration transmission.The multifunctional feature of the structure is achieved by using transparent resins that present both mechanical and optical properties for structural integrity and strain/deflection transmission as well as the optical signal transmission properties with core/cladding configuration of a waveguide.In this case,photocurable and polydimethylsiloxane(PDMS)resins are used for the core and cladding,respectively.The optical transmission,tensile tests,and dynamic mechanical analysis are performed in the resins and show the possibility of light transmission at the visible wavelength range in conjunction with high flexibility and a dynamic range up to 150 Hz,suitable for wearable applications.The BioMFOS has small dimensions(around 2 cm)and lightweight(0.8 g),making it suitable for wearable application and clothing integration.Characterization tests are performed in the structure by means of applying forces at different locations of the structure.The results show an ultra-high sensitivity and resolution,where forces in theμN range can be detected and the location of the applied force can also be detected with a sub-millimeter spatial resolution.Then,the BioMFOS is tested on the orientation detection in 3D plane,where a correlation coefficient higher than 0.9 is obtained when compared with a gold-standard inertial measurement unit(IMU).Furthermore,the device also shows its capabilities on the movement analysis and classification in two protocols:finger position detection(with the BioMFOS positioned on the top of the hand)and trunk orientation assessment(with the sensor integrated on the clothing).In both cases,the sensor is able of classifying the movement,especially when analyzed in conjunction with preprocessing and clustering techniques.As another wearable application,the respiratory rate is successfully estimated with the BioMFOS integrated into the clothing.Thus,the proposed multifunctional device opens new avenues for novel bioinspired photonic devices and can be used in many applications of biomedical,biomechanics,and micro/nanotechnology.
文摘This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by chemical method and their outsides are peeled to form particles of irregular distribution and they differ in size, so the slight disturbance range of stochastic wall are formed in fibers. According to the characteristics of power loss of waveguide mode caused by slight disturbance of stochastic wall and radiative mode transmission, the range of slight disturbance of stochastic wall may be served as the sensitive range of the sensor. On the basis of theory of slight disturbance of stochastic wall of planar optical waveguide, the relation between the corrosion time and the opposite power loss by experiments is investigated. In this paper, the measurement results of object of SIFORS are also presented. The results show that the optical sensor technique may be used in the damage evaluation of an aircraft.
基金Project supported by the Taishan Scholars Youth Expert Program of Shandong Provincethe Qilu Young Scholar Program of Shandong University, China
文摘Carbon ion irradiation and precise diamond blade dicing are applied to fabricate Nd∶GdCOB ridge waveguides.The propagation properties of the fabricated Nd∶GdCOB waveguides are investigated through experiments and theoret-ical analysis.Micro-Raman analysis reveals that the Nd∶GdCOB crystal lattice expands during the irradiation process.Micro-second harmonic spectroscopic analysis suggests that the original nonlinear properties of the Nd∶GdCOB crystal are greatly enhanced within the waveguide volume.Under pulsed 1064 nm laser pumping,second harmonic generation(SHG)at 532 nm has been achieved in the fabricated waveguides.The maximum SHG conversion efficiencies are determined to be~8.32%·W^(-1) and~22.36%·W^(-1) for planar and ridge waveguides,respectively.
基金financial support from National Natural Science Foundation of China(No.61775120).
文摘Optical waveguides are far more than mere connecting elements in integrated optical systems and circuits.Benefiting from their high optical confinement and miniaturized footprints,waveguide structures established based on crystalline materials,particularly,are opening exciting possibilities and opportunities in photonic chips by facilitating their on-chip integration with different functionalities and highly compact photonic circuits.Femtosecond-laser-direct writing(FsLDW),as a true three-dimensional(3D)micromachining and microfabrication technology,allows rapid prototyping of on-demand waveguide geometries inside transparent materials via localized material modification.The success of FsLDW lies not only in its unsurpassed aptitude for realizing 3D devices but also in its remarkable material-independence that enables cross-platform solutions.This review emphasizes FsLDW fabrication of waveguide structures with 3D layouts in dielectric crystals.Their functionalities as passive and active photonic devices are also demonstrated and discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61904091 and 61775111)Zhejiang Provincial Natural Science Foundation of China(Grant No.LR18E010002)+2 种基金the Natural Science Foundation of Ningbo City,China(Grant No.2019A610065)the International Cooperation Project of Ningbo City,China(Grant No.2017D10009)K.C.Wong Magna Fund in Ningbo University,China.
文摘We reported a chalcogenide glass-based rib waveguide fabricated using photolithography and dry etching method. A commercial software(COMSOL Multiphysics) was used to optimize the waveguide structure and the distribution of the fundamental modes in the waveguide based on the complete vector finite component. We further employed thermal annealing to optimize the surface and sidewalls of the rib waveguides. It was found that the optimal annealing temperature for Ge As Se S films is 220℃, and the roughness of the films could be significantly reduced by annealing. The zero-dispersion wavelength(ZDW) could be shifted to a short wavelength around ~2.1 μm via waveguide structural optimization, which promotes supercontinuum generation with a short wavelength pump laser source. The insertion loss of the waveguides with cross-sectional areas of 4.0 μm×3.5 μm and 6.0 μm×3.5 μm was measured using lens fiber and the cut-back method. The propagation loss of the 220℃ annealed waveguides could be as low as 1.9 d B/cm at 1550 nm.
基金supported by the Project of Shanghai Committee of Science and Technology under Grant No.10511500500ZTE Industry-Academia-Research Cooperation Funds
文摘Optical scattering loss coefficient of muhimode rectangular waveguide is analyzed in this work. First, the effective refrac tive index and the mode field distribution of waveguide modes are obtained using the Marcatili method. The influence on scattering loss coefficient by waveguide surface roughness is then analyzed. Finally, the mode coupling efficiency for the SMFOpticalWaveguide (SOW) structure and MMFOptical Waveguide (MOW) structure are presented. The total scatter ing loss coefficient depends on modes scattering loss coeffi cients and the mode coupling efficiency between fiber and waveguide. The simulation results show that the total scatter ing loss coefficient for the MOW structure is affected more strongly by surface roughness than that for the SOW struc ture. The total scattering loss coefficient of waveguide decreas es from 3.97 x 10^-2 dB/cm to 2.96 x 10^-4 dB/cm for the SOW structure and from 5.24 - 10^-2 dB/cm to 4.7 x 10^-4 dB/ cm for the MOW structure when surface roughness is from 300nm to 20nm and waveguide length is 100cm.
基金Supported by the Key Grant Project of the Ministry of Education of China under Grant No 313007
文摘We present a silicon slot waveguide with metallic gratings embedded on the silicon surface in the slot region. The dependence of the optical coupling between two silicon wires on the width of the metal gap and the slot size are studied in detail. The results show that the optical field in the slot region with metallic gratings is significantly enhanced compared with the traditional slot waveguide due to the surface plasmon polaritons coupling on metallic gratings. The extraordinary optical confinement is attributed to the low effective dielectric constant of metallic gratings. The effective dielectric constant decreases with the increasing wavelength, and reaches the minimum when the width of the metal gap is about 0.01 times the wavelength.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274242,11474221,and 11574229)the Joint Fund of the National Natural Science Foundation of China+2 种基金the China Academy of Engineering Physics(Grant No.U1330203)the National Key Basic Research Special Foundation of China(Grant Nos.2011CB922203 and 2013CB632701)the Doctor Startup Fund of the Natural Science of Jinggangshan University,China(Grant No.JZB16003)
文摘Recently, theoretical and experimental nano-sized fundamental devices for optical circuits have been proposed at the single-photon level. The assembly of a realistic optical circuit is now a reality. In this work, we introduce a single-photon interconnector composed of two individual nanowires and an optical N-type four-level emitter that can turn the optical connection on and off optically. Because of dipole-induced transmission at the single-photon level, a single photon can travel between the two nanowires reciprocally, which guarantees its application as an all-optical interconnector.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12365003, 12364024, and 11864014)the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20212BAB201014 and 20224BAB201023)。
文摘We propose a frequency-tunable router of single photons with high routing efficiency, which is constructed by two waveguides mediately linked by a single-mode whispering gallery resonator with a driven three-level emitter. Quantum routing probability in the output port is obtained via the real-space Hamiltonian. By adjusting the resonator–emitter coupling and the drive, the desired continuous central frequencies for the resonance peaks of routing photons can be manipulated nearly linearly, with the assistance of Rabi splitting effect and optical Stark shift. The proposed routing system may provide potential applications in designing other frequency-modulation quantum optical devices, such as multiplexers,filters, and so on.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12365003,12364024,and 11864014)the Jiangxi Provincial Natural Science Foundation(Grant Nos.20212BAB201014 and 20224BAB201023)。
文摘We theoretically investigate coherent scattering of single photons and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system.Using the real-space Hamiltonian,analytical expressions are derived for the transport spectra scattered by these two giant atoms with four azimuthal angles.Fano-like resonance can be exhibited in the scattering spectra by adjusting the azimuthal angle difference.High concurrence of the entangled state for two atoms can be implemented in a wide angle-difference range,and the entanglement of the atomic states can be switched on/off by modulating the additional azimuthal angle differences from the giant atoms.This suggests a novel handle to effectively control the single-photon scattering and quantum entanglement.
基金Project supported by the National Key Research and Development Program of China (Grant No.2018YFB2200403)the National Natural Science Foundation of China (Grant Nos.91950204 and 92150302)。
文摘Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have been well introduced.The definition, measurement methods and the evolution process of the dynamic topological photonics are demonstrated to better understand the physical diagram. This review is meant to bring the readers a different perspective on topological photonics, grasp the advanced progress of dynamic topology, and inspire ideas about future prospects.
基金Project supported by the National Natural Science Foundation of China (Grant No 60771052)the Natural Science Foundation of Shanxi Province,China (Grant No 2006011029)
文摘We introduce a modified surface plasmonic waveguide with an arc slot. The dependences of distribution of energy flux density, effective index, propagation length and mode area of the symmetric mode supported by this waveguide on geometrical parameters and working wavelength are analysed by using the finite-difference frequency-domain (FDFD) method. Results show that the energy flux density distributes mainly in four corners which are formed by two arcs, and the closer to the corners it is, the stronger the energy flux density will be. The effective index, the propagation length and the mode area are influenced by geometrical parameters, including the width, the thickness and the arc radius of the surface plasmonic waveguide, as well as the working wavelength. It has been shown that the surface plasmonic waveguide with an arc slot has better propagation properties than the surface plasmonic waveguide with a straight slot. This work may be helpful for applying the slot surface plasmonic waveguide to integrated photonics.
文摘A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.
基金supported by the National Natural Science Foundation of China(Grant No.11174372)
文摘We fnrther study theoretically the properties of switching and Fano resonance in a hybrid nanosystem consisting of two quantum dots (QDs) and a metal nanowire via exciton-plasmon interaction. The transmission of the single plasmon can be switched on or off in a wide-frequency region by adjusting the transition frequencies of the QDs and the phase of the propagating plasmon. Specifically, the dynamical mechanism of Fano-type transmission is further revealed and analyzed in detail.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10774195,U0834001,and 10974263)the Ministry of Education,China (Grant No.309024)+1 种基金the Program for New Century Excellent Talents in University,Chinathe National Basic Research Program of China (Grant No.2010CB923201)
文摘This paper presents a novel in-plane photonic crystal channel drop filter. The device is composed of a resonant cavity sandwiched by two parallel waveguides. The cavity has two resonant modes with opposite symmetries. Tuning these two modes into degeneracy causes destructive interference in bus waveguide, which results in high forward drop efficiency at the resonant wavelength. From the result of numerical analysis by using two-dimensional finite-difference time-domain method, the channel drop filter has a drop efficiency of 96% and a Q value of over 3000, which can be used in dense wavelength division multiplexing systems.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60771052)the Natural Science Foundation of Shanxi Province, China (Grant No. 2006011029)
文摘In this paper, two kinds of modified surface plasmonic waveguides formed by nanometric parallel lines are proposed. The finite-difference frequency-domain method is used to study propagation properties of the fundamental mode supported by these surface plasmonie waveguide structures. Results show that the transverse magnetic field of the fundamental mode is mainly distributed in the face to face region formed by two rods. With the same geometrical parameters and the same working wavelength of 632.8 nm, in the case of rods with a triangular cross-section, the degree of localization of field is strong, i.e. the mode area is small, but the fraction of the modal power in the metal increases, so the effective index increases and the propagation length of the mode decreases. With the same geometrical parameters, relative to the case of a working wavelength of 632.8 nm, when working wavelength is large, the mode area of transverse magnetic field distribution is large, i.e. the degree of localization of field is weak, and the interaction of field and silver is weak too, then the effective index decreases, so the propagation length increases. The rounded radii of rods have a great influence on the performance of the surface plasmonic waveguides with rounded triangular cross-sections, but have little influence on the performance of surface plasmonic waveguides with rounded square cross-sections. Since the distribution of transverse magnetic field, effective index, propagation length and the mode area can be adjusted by the geometrical parameters, this kind of modified surface plasmonic waveguide can be applied to the field of photonic device integration and sensors.