To find out the influence of technological parameters on optical performance of fused optical fiber device, the fiber coupler was served as subject investigated by using the fused biconical taper machining as experime...To find out the influence of technological parameters on optical performance of fused optical fiber device, the fiber coupler was served as subject investigated by using the fused biconical taper machining as experimental setup. Fused fiber coupler's optical performances such as insertion loss, excess loss, directivity and uniformity were tested with the optical test system that was constituted of tunable laser and optical spectrum analyzer. Especially the relationship between optical performance and drawing speed was investigated. The experimental results show that the optical performance is closely related to process conditions. At fused temperature of 1 200 ℃, there exists a drawing speed of 150 μms, which makes the device's performance optimum. Out of this speed region, the optical performance drops quickly. At drawing speed of 200 μms, the excess loss is relatively small when the fused temperature is above 1 200 ℃. So the technological parameters have close relationship with optical performance of the coupler, and the good performance coupler can't get until the drawing speed and fused temperature match accurately.展开更多
In this work,the generation of high signal-to-noise ratio(SNR)single-frequency microwave signal without noise sidebands is demonstrated based on the interaction of integrated all-fiber lasers.The microwave signals are...In this work,the generation of high signal-to-noise ratio(SNR)single-frequency microwave signal without noise sidebands is demonstrated based on the interaction of integrated all-fiber lasers.The microwave signals are generated by the interference between a narrow linewidth Brillouin pump light from a single-frequency laser and the Stokes light generated by it.Firstly,the linewidths of the Stokes lights are compressed to~43 Hz based on the stimulated Brillouin scattering(SBS)effect,which ensures that the frequency noise is as low as possible.And then,the relative intensity noise(RIN)of the first order Stokes light is reduced by 21 dB/Hz based on the noise dynamics principle in cascaded SBS effect.By simultaneously reducing the frequency noise and the intensity noise of the coherent signals,the noise sidebands of microwave signals are completely suppressed.As result,the SNR of the microwave signal is improved from 48 dB to 84 dB at the first-order Brillouin frequency shift of 9.415 GHz.Meanwhile,a microwave signal with a SNR of 70 dB is generated at the second-order Brillouin frequency shift of 18.827 GHz.This kind of microwave signals with narrow linewidth and high SNR can provide higher detection resolution and higher transmission efficiency for applications on radar,satellite communication and so on.展开更多
Infrared optical coatings in SITP (Shanghai Institute of Technical Physics) mainly cover the spectrum range from 0.7 μm to 15 μm, and visible and near-UV range are also been included. The coatings are mainly used fo...Infrared optical coatings in SITP (Shanghai Institute of Technical Physics) mainly cover the spectrum range from 0.7 μm to 15 μm, and visible and near-UV range are also been included. The coatings are mainly used for metal-reflectance mirrors, Anti-reflection(AR) lens and windows, filters, and dichroic beam splitters. Coatings passed some dependability tests. These optical coated devices usually consist in a remote observing instrument. Most coating materials are commercial products. And one kind of special material PbTe is made by ourselves. Some main results of our research department are reported.展开更多
A hardware-in-the-loop (HWIL) simulator for gun servo system is described in this paper, and its load modeling technologies,such as road spectrum model,sea wave model are studied. The simulation results show that the ...A hardware-in-the-loop (HWIL) simulator for gun servo system is described in this paper, and its load modeling technologies,such as road spectrum model,sea wave model are studied. The simulation results show that the models can be used in HWIL and satisfy the requirements of hardware-in-the-loop simulator of gun servo system.展开更多
A scheme is proposed,of that the axis of directional barrel is simulated by a laser beam and an electro-optical axial angle encoder is using to measure the swaying of rocket launcher or artillery. The measuring princi...A scheme is proposed,of that the axis of directional barrel is simulated by a laser beam and an electro-optical axial angle encoder is using to measure the swaying of rocket launcher or artillery. The measuring principle is stated,and an electro-optical measuring system is designed,including automatic force-applying device,angle-measurement device and photodetecting screen. The measurement accuracy of the system is analyzed. The measuring error of system is less then 17.3″(0.08 mil).展开更多
Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance,and its control system consists of stabilizing and tracking com...Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance,and its control system consists of stabilizing and tracking components.Stabilizing control is applied to track angular velocity order and control multi-disturbance under airborne condition,and its robustness should be very good;tracking control is applied to compensate tracking error of angular position.A mathematical model is established by taking the control of yaw loop as example.H∞ stabilizing controller is designed by taking the advantage of H∞ control robustness and combining with Kalman filter.A fuzzy control is introduced in general PID control to design a decoupled fuzzy Smith estimating PID controller for tracking control.Simulation research shows that the control effect of airborne electro-optical tracking and sighting system based on fuzzy PID and H∞ control is good,especially when the model parameters change and the multi-disturbance exists,the system capability has little fall,but this system still can effectively track a target.展开更多
基金Project (50605063) supported by the National Natural Science Foundation of ChinaProject(NCET-040753) supported by New Century Excellent Talents in University of ChinaProject (20050533037) supported by the Doctoral Program of Higher Education of China
文摘To find out the influence of technological parameters on optical performance of fused optical fiber device, the fiber coupler was served as subject investigated by using the fused biconical taper machining as experimental setup. Fused fiber coupler's optical performances such as insertion loss, excess loss, directivity and uniformity were tested with the optical test system that was constituted of tunable laser and optical spectrum analyzer. Especially the relationship between optical performance and drawing speed was investigated. The experimental results show that the optical performance is closely related to process conditions. At fused temperature of 1 200 ℃, there exists a drawing speed of 150 μms, which makes the device's performance optimum. Out of this speed region, the optical performance drops quickly. At drawing speed of 200 μms, the excess loss is relatively small when the fused temperature is above 1 200 ℃. So the technological parameters have close relationship with optical performance of the coupler, and the good performance coupler can't get until the drawing speed and fused temperature match accurately.
文摘In this work,the generation of high signal-to-noise ratio(SNR)single-frequency microwave signal without noise sidebands is demonstrated based on the interaction of integrated all-fiber lasers.The microwave signals are generated by the interference between a narrow linewidth Brillouin pump light from a single-frequency laser and the Stokes light generated by it.Firstly,the linewidths of the Stokes lights are compressed to~43 Hz based on the stimulated Brillouin scattering(SBS)effect,which ensures that the frequency noise is as low as possible.And then,the relative intensity noise(RIN)of the first order Stokes light is reduced by 21 dB/Hz based on the noise dynamics principle in cascaded SBS effect.By simultaneously reducing the frequency noise and the intensity noise of the coherent signals,the noise sidebands of microwave signals are completely suppressed.As result,the SNR of the microwave signal is improved from 48 dB to 84 dB at the first-order Brillouin frequency shift of 9.415 GHz.Meanwhile,a microwave signal with a SNR of 70 dB is generated at the second-order Brillouin frequency shift of 18.827 GHz.This kind of microwave signals with narrow linewidth and high SNR can provide higher detection resolution and higher transmission efficiency for applications on radar,satellite communication and so on.
文摘Infrared optical coatings in SITP (Shanghai Institute of Technical Physics) mainly cover the spectrum range from 0.7 μm to 15 μm, and visible and near-UV range are also been included. The coatings are mainly used for metal-reflectance mirrors, Anti-reflection(AR) lens and windows, filters, and dichroic beam splitters. Coatings passed some dependability tests. These optical coated devices usually consist in a remote observing instrument. Most coating materials are commercial products. And one kind of special material PbTe is made by ourselves. Some main results of our research department are reported.
文摘A hardware-in-the-loop (HWIL) simulator for gun servo system is described in this paper, and its load modeling technologies,such as road spectrum model,sea wave model are studied. The simulation results show that the models can be used in HWIL and satisfy the requirements of hardware-in-the-loop simulator of gun servo system.
文摘A scheme is proposed,of that the axis of directional barrel is simulated by a laser beam and an electro-optical axial angle encoder is using to measure the swaying of rocket launcher or artillery. The measuring principle is stated,and an electro-optical measuring system is designed,including automatic force-applying device,angle-measurement device and photodetecting screen. The measurement accuracy of the system is analyzed. The measuring error of system is less then 17.3″(0.08 mil).
基金Sponsored by Foundation for Excellent Young Teachers in Universities of Henan Province of China(2002[121])
文摘Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance,and its control system consists of stabilizing and tracking components.Stabilizing control is applied to track angular velocity order and control multi-disturbance under airborne condition,and its robustness should be very good;tracking control is applied to compensate tracking error of angular position.A mathematical model is established by taking the control of yaw loop as example.H∞ stabilizing controller is designed by taking the advantage of H∞ control robustness and combining with Kalman filter.A fuzzy control is introduced in general PID control to design a decoupled fuzzy Smith estimating PID controller for tracking control.Simulation research shows that the control effect of airborne electro-optical tracking and sighting system based on fuzzy PID and H∞ control is good,especially when the model parameters change and the multi-disturbance exists,the system capability has little fall,but this system still can effectively track a target.