期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
青光眼检测视盘与视杯分割在深度学习中的研究综述
1
作者 罗敏 曹路 +4 位作者 利建铖 何锡权 刘广武 温晋瑜 黄秀清 《计算机工程与应用》 北大核心 2025年第9期61-79,共19页
精准的视盘与视杯分割对于青光眼的检测至关重要。近年来,深度学习技术在视盘与视杯分割领域取得了优异的成果,显著提升了分割精度。从深度学习技术在视盘与视杯分割的研究现状出发,归纳了视盘与视杯分割的常用数据集,包括其内容、用途... 精准的视盘与视杯分割对于青光眼的检测至关重要。近年来,深度学习技术在视盘与视杯分割领域取得了优异的成果,显著提升了分割精度。从深度学习技术在视盘与视杯分割的研究现状出发,归纳了视盘与视杯分割的常用数据集,包括其内容、用途和获取路径;概述了评估分割性能与模型性能的关键指标。分析了视盘与视杯分割中四类主要研究方法:基于多尺度的方法、注意力机制的融合、对抗学习机制及集成学习方法。对这些方法进行了优缺点分析,总结了它们在常用公开数据集上的性能指标。最后,探讨了视盘与视杯分割在青光眼检测中所面临的挑战,并展望了未来的研究方向,旨在为该领域的进一步研究提供参考。 展开更多
关键词 青光眼 图像分割 视盘 视杯
在线阅读 下载PDF
基于对抗学习和引导机制的视盘和视杯联合分割 被引量:1
2
作者 马晓月 陈媛媛 《计算机工程》 CAS CSCD 北大核心 2024年第12期59-69,共11页
准确的视盘(OD)和视杯(OC)分割能够有效地辅助青光眼的诊断和监测,从而进一步提高治疗效果。然而,现有方法没有考虑到眼底图像不同通道之间的差异,并且难以实现对OC边界的精确分割。针对这个问题,提出一种基于对抗学习和引导机制的网络... 准确的视盘(OD)和视杯(OC)分割能够有效地辅助青光眼的诊断和监测,从而进一步提高治疗效果。然而,现有方法没有考虑到眼底图像不同通道之间的差异,并且难以实现对OC边界的精确分割。针对这个问题,提出一种基于对抗学习和引导机制的网络框架ALG-Net,旨在提高OD和OC的分割性能。ALG-Net由分割网络和鉴别器两部分组成。在分割网络中,构建引导融合模块(GFM),该模块将单通道特征信息与RGB图像特征融合,使网络充分学习眼底图像不同通道之间的差异信息,引导分割网络聚焦于关键区域。ALG-Net网络框架还采用了鉴别器,通过对抗学习的方式促进分割网络生成更真实的分割结果。在REFUGE和Drishti-GS数据集上进行广泛的实验评估,实验结果表明,ALG-Net在RUFUGE数据集上OD和OC分割的平衡精度分别达到了98.6%和95.9%,在Drishti-GS数据集上也表现出优异的性能。此外,ALG-Net的分割结果应用于青光眼分类任务,在RUFUGE数据集上ROC曲线下面积(AUC)为0.983,相较于经典UNet算法提高了0.015,为青光眼的早期诊断和监测提供了有力的支持。 展开更多
关键词 青光眼诊断 视盘分割 视杯分割 UNet模型 注意力机制 引导机制 对抗学习
在线阅读 下载PDF
基于融合中间特征网络的视盘和视杯联合分割
3
作者 刘哲夏 李峰 江旻珊 《控制工程》 CSCD 北大核心 2024年第7期1272-1279,共8页
针对视盘和视杯联合分割中视杯分割精度较差的问题,提出了一种融合编码与解码中间特征的U型网络(encode-decode middle feature fusion U-Net,EMFF-Net)。EMFF-Net使用预训练的ResNet34作为编码结构,在编码结构后加入密集空洞卷积和金... 针对视盘和视杯联合分割中视杯分割精度较差的问题,提出了一种融合编码与解码中间特征的U型网络(encode-decode middle feature fusion U-Net,EMFF-Net)。EMFF-Net使用预训练的ResNet34作为编码结构,在编码结构后加入密集空洞卷积和金字塔池化模块以产生复合感受域的特征,并使用交叉注意力连接替换U型网络结构中的跳跃连接。交叉注意力连接融合了编码特征与解码特征,通过通道注意力模块和空间注意力模块提取融合特征的信息用于强化解码特征,减小了解码特征与编码特征的语义沟壑。强化后的解码特征与编码特征再次融合后,通过解码结构输出视盘和视杯的联合分割结果。实验结果表明,与其他常用的分割方法相比,EMFF-Net的视盘和视杯联合分割效果较好,视杯分割性能有明显提升。 展开更多
关键词 视盘视杯分割 特征融合 EMFF-Net 深度学习 交叉注意力连接
在线阅读 下载PDF
基于多特征融合的彩色眼底图像视杯分割方法 被引量:2
4
作者 吴骏 尚丹丹 +2 位作者 肖志涛 耿磊 张芳 《天津工业大学学报》 北大核心 2017年第6期66-72,共7页
为了提高彩色眼底图像中视杯的分割精度,提出了一种基于多特征融合的彩色眼底图像视杯分割方法.首先提取感兴趣区域的血管;然后分割视盘区域,在视盘分割的基础上根据视杯的亮度特征采用模糊C均值聚类(FCM)法提取视杯候选区域,并根据视... 为了提高彩色眼底图像中视杯的分割精度,提出了一种基于多特征融合的彩色眼底图像视杯分割方法.首先提取感兴趣区域的血管;然后分割视盘区域,在视盘分割的基础上根据视杯的亮度特征采用模糊C均值聚类(FCM)法提取视杯候选区域,并根据视杯的形状和位置特征对候选区域依次进行镜像映射、椭圆拟合及椭圆校正,得到视杯的粗分割结果;最后利用杯沿的血管特征定位血管弯曲点,修正视杯粗分割结果,完成视杯的准确分割.对Glaucoma Repo眼底图像数据库进行测试,实验结果表明:该方法的灵敏度为87.15%,特异性为99.03%,准确率为98.12%,阳性预测值为82.03%,综合评价指标为84.51%,像素距离为18.80,具有较高的鲁棒性和有效性. 展开更多
关键词 彩色眼底图像 多特征融合 视杯分割 视盘分割 模糊C均值聚类 椭圆拟合
在线阅读 下载PDF
多算法融合的视盘分割方法 被引量:2
5
作者 傅迎华 王雅静 +1 位作者 付东翔 杨振宇 《小型微型计算机系统》 CSCD 北大核心 2019年第12期2681-2685,共5页
视盘准确地定位与分割是视网膜相关研究的基础,为了提高算法的自适应性,避免受不同病变的影响,本文提出了融合多种传统分割算法的视盘分割方法.首先对视网膜图像进行主成分分析得到灰度图片,再利用形态学方法去除血管.接着采用改进的霍... 视盘准确地定位与分割是视网膜相关研究的基础,为了提高算法的自适应性,避免受不同病变的影响,本文提出了融合多种传统分割算法的视盘分割方法.首先对视网膜图像进行主成分分析得到灰度图片,再利用形态学方法去除血管.接着采用改进的霍夫圆变换的方法定位视盘,并将得到的视盘中心作为标记进行分水岭变换分割视盘得到初始曲线.最后利用CV模型将曲线演化到正确的视盘边界.本文在两个公开的眼底图像数据集(MESSIDOR,DRIONS-DB)上进行了算法验证,实验结果表明该算法对视盘的定位具有较高的准确度(ACC):98%和100%,视盘分割的重叠率(OP)为92.0%和94.4%.与其他算法进行对比,该方法可以有效地避免病灶的干扰,具有很好的定位和分割效果. 展开更多
关键词 视盘分割 霍夫圆变换 分水岭算法 标记提取 CV模型
在线阅读 下载PDF
基于多尺度特征的视盘分割方法 被引量:1
6
作者 燕杨 曹娅迪 黄文博 《吉林大学学报(理学版)》 CAS 北大核心 2023年第1期136-142,共7页
针对视盘、视杯分割任务中,由青光眼病变引起目标大小显著变化导致的错误分割问题,提出一种使用更轻量级的编码器-解码器网络,并引入金字塔池化模块,通过网络丰富的感受野捕捉更多上下文特征,丰富尺度特征,充分利用全局信息.在数据集RIM... 针对视盘、视杯分割任务中,由青光眼病变引起目标大小显著变化导致的错误分割问题,提出一种使用更轻量级的编码器-解码器网络,并引入金字塔池化模块,通过网络丰富的感受野捕捉更多上下文特征,丰富尺度特征,充分利用全局信息.在数据集RIM-ONE v.3上进行多组对比实验和评估,实验结果表明,该方法对视盘分割的平均交并比为0.908, Dice系数为0.958,均方误差为0.002,比现有算法各项指标性能均有提高. 展开更多
关键词 视盘分割 视杯分割 金字塔池化模块 彩色眼底图像
在线阅读 下载PDF
改进的多任务学习方法的眼底视盘分割与定位 被引量:2
7
作者 李宁 尚英强 +2 位作者 熊俊 邰宝宇 时晨杰 《应用科学学报》 CAS CSCD 北大核心 2021年第6期952-960,共9页
提出了一种改进的多任务学习方法,网络的主结构由特征提取网络和分别进行视盘分割与视盘定位的双路径网络组成,通过端到端的训练与测试可以实现眼底图像视盘自动分割与定位相结合的多任务目的。在特征提取网络的编码阶段利用密集连接提... 提出了一种改进的多任务学习方法,网络的主结构由特征提取网络和分别进行视盘分割与视盘定位的双路径网络组成,通过端到端的训练与测试可以实现眼底图像视盘自动分割与定位相结合的多任务目的。在特征提取网络的编码阶段利用密集连接提取眼底图像视盘的上下文特征。视盘分割任务是依靠解码阶段逐步恢复原来的图像分辨率并获取整个视盘轮廓,视盘中心定位任务由空洞空间金字塔模块和金字塔池化模块来进一步提取视盘抽象特征,得到精准的视盘中心坐标。对350幅眼底图像进行了视盘分割和中心定位,实验结果表明:该方法自动分割的视盘结果与手动标注视盘区域的Dice系数为0.965,自动定位的视盘中心坐标与手动标记的视盘中心的平均绝对距离为0.191 mm(34.7像素)。 展开更多
关键词 视盘分割 视盘定位 密集块 空间金字塔池化 空洞空间金字塔池化 多任务学习
在线阅读 下载PDF
融合金字塔切分注意力模块的视杯视盘分割 被引量:2
8
作者 刘熠翕 江旻珊 张学典 《上海理工大学学报》 CAS CSCD 北大核心 2022年第6期532-539,545,共9页
视杯和视盘的垂直直径比是青光眼在临床诊断中的重要指标,为了更加准确地测量杯盘比,针对视网膜眼底图像中的视盘和视杯分割精度的问题,提出了一个改进后的端到端的U型卷积神经网络框架,采用Resnet 34作为新的编码部分,并在每一个编码... 视杯和视盘的垂直直径比是青光眼在临床诊断中的重要指标,为了更加准确地测量杯盘比,针对视网膜眼底图像中的视盘和视杯分割精度的问题,提出了一个改进后的端到端的U型卷积神经网络框架,采用Resnet 34作为新的编码部分,并在每一个编码层的末端引入金字塔切分注意力PSA模块以提取更多的有效特征信息。同时使用1×1卷积代替3×3卷积来简化解码结构,并且使用一个3×3卷积与一个通过跳跃连接的1×1卷积结构取代跳跃连接。该网络模型在内部数据集上完成训练后,在DRISHTI-GS数据集进行测试,对视盘和视杯的分割结果在Dice和IOU上分别表现为97.61%和95.32%,92.91%和86.75%,证明了该模型具有良好的泛化性。 展开更多
关键词 卷积神经网络 视杯视盘分割 多尺度特征融合 注意力机制
在线阅读 下载PDF
融合感受野模块的卷积神经网络视杯视盘联合分割 被引量:4
9
作者 于舒扬 袁鑫 郑秀娟 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第2期167-176,共10页
青光眼是世界第一大不可逆致盲性眼病,早期诊断和及时治疗是预防青光眼致盲的有效措施。眼底图像中的杯盘比是青光眼早期筛查与临床诊断的重要指标。因此,精确的视杯视盘分割是准确计算杯盘比并提高青光眼计算机辅助诊断技术的关键。针... 青光眼是世界第一大不可逆致盲性眼病,早期诊断和及时治疗是预防青光眼致盲的有效措施。眼底图像中的杯盘比是青光眼早期筛查与临床诊断的重要指标。因此,精确的视杯视盘分割是准确计算杯盘比并提高青光眼计算机辅助诊断技术的关键。针对这一问题,在对眼底图像进行极坐标变换的基础上,提出一种融合感受野模块的卷积神经网络Seg-RFNet,以实现视杯视盘联合分割。Seg-RFNet以SegNet框架为基础,使用ResNet50作为编码层,增强图像的特征提取能力,并对编码层进行分支处理,进一步获得更多的深层语义信息;同时在编码层和解码层之间加入感受野模块,模拟人类视觉系统,在增大感受野的同时增强了有用特征的响应。使用MICCAI 2018公开数据集REFUGE中的800张眼底图像对所提出方法与其他方法进行性能验证和比较。结果表明,Seg-RFNet分割视杯和视盘的Jaccard相似度分别0.951 5和0.872 0,F分数达到了0.974 9和0.930 1,与常用的U-Net、SegNet网络相比,Seg-RFNet具有更好的视杯视盘联合分割精度,为计算杯盘比提供了精确分割基础。 展开更多
关键词 卷积神经网络 眼底图像 视杯分割 视盘分割 青光眼筛查
在线阅读 下载PDF
多专家注释的视杯和视盘不确定性量化 被引量:1
10
作者 刘丽霞 宣士斌 +1 位作者 刘畅 李嘉祥 《计算机工程》 CAS CSCD 北大核心 2023年第1期250-257,269,共9页
现有基于深度学习的视杯和视盘分割方法在模型训练时,仅使用图像的单个注释或从多个注释中获取唯一的注释信息,忽略原始多专家标注中嵌入的一致性或差异性信息,从而导致模型和预测结果过度自信等问题。提出一种基于多解码器不确定性感... 现有基于深度学习的视杯和视盘分割方法在模型训练时,仅使用图像的单个注释或从多个注释中获取唯一的注释信息,忽略原始多专家标注中嵌入的一致性或差异性信息,从而导致模型和预测结果过度自信等问题。提出一种基于多解码器不确定性感知体系的模型MUA-Net。通过引入专业知识推断模块,将各个专家注释的专业知识水平作为先验知识嵌入编码器和解码器的瓶颈中,以形成包含专家线索的高级语义特征。利用可同时学习多个注释的多解码器结构调节多专家之间的分歧,重构多专家注释过程,并对不确定或分歧区域进行量化。提出一种双分支软注意机制,增强多解码器分割预测的模糊区域,得到最终校准的分割结果。实验结果表明,该模型在RIGA数据集上能以较高的不确定性预测合理的区域,与MRNet模型相比,该模型在视杯分割中的平均精度、Dice系数、交并比分别提升了0.75、0.39、0.41个百分点。 展开更多
关键词 不确定性估计 多解码器 多专家注释 视杯视盘分割 软注意机制
在线阅读 下载PDF
采用双支路和Transformer的视杯视盘分割方法 被引量:1
11
作者 王甜甜 史卫亚 +1 位作者 张世强 张绍文 《科学技术与工程》 北大核心 2023年第6期2499-2508,共10页
视网膜血管复杂且背景与视杯视盘区域相似,是造成视杯视盘分割精度不高的原因。为了更加准确地分割视杯视盘,设计了一种具有双支路特征融合的分割网络。网络主支使用Transformer对特征进行提取,弥补了卷积运算在建立远程关系方面存在的... 视网膜血管复杂且背景与视杯视盘区域相似,是造成视杯视盘分割精度不高的原因。为了更加准确地分割视杯视盘,设计了一种具有双支路特征融合的分割网络。网络主支使用Transformer对特征进行提取,弥补了卷积运算在建立远程关系方面存在的不足。采用多个模块来融合浅层空间特征与高级语义特征:尺度感知-特征融合模块(SCA-FFM)用于从高层次特征中收集视盘和视杯的语义和位置信息;识别模块(IM)利用注意力机制减少低层次特征中存在的错误信息和噪声,增强空间细节特征的提取;使用图卷积域-特征融合模块(GCD-FFM)将高级语义特征和低级特征进行融合,使特征图同时具有全局和局部信息。对比实验表明,本文方法表现出更好的分割效果,且具备良好的泛化能力。 展开更多
关键词 青光眼 视盘分割 视杯分割 TRANSFORMER 特征融合
在线阅读 下载PDF
一种基于改进Attention U-net的联合视杯视盘分割方法 被引量:1
12
作者 秦运输 王行甫 《计算机应用与软件》 北大核心 2021年第3期181-189,共9页
青光眼是当前世界范围内致盲的主要病因之一,其发病过程没有明显的特征。视杯盘比是青光眼诊断中最主要的评估指标之一,这使得视杯视盘的分割成为了目前青光眼诊断的关键。已有的视杯视盘分割方法大多基于手工提取的特征,低效且精度不... 青光眼是当前世界范围内致盲的主要病因之一,其发病过程没有明显的特征。视杯盘比是青光眼诊断中最主要的评估指标之一,这使得视杯视盘的分割成为了目前青光眼诊断的关键。已有的视杯视盘分割方法大多基于手工提取的特征,低效且精度不高。提出一种名为MAR2U-net的深度神经网络架构用于青光眼视杯视盘的联合分割。它是基于Attention U-net的一种改进架构,通过在Attention U-net的基础之上引入递归残差卷积模块来提取更加深层次的特征,并结合多尺度的输入和多标签的Focal Tversky损失函数来提升模型的联合分割性能。实验结果表明,该方法在REFUGE数据集上的分割效果较已有方法取得了显著提升,为实现大规模的青光眼诊断筛查提供了基础。 展开更多
关键词 青光眼检测 视杯与视盘 分割 ATTENTION U-net
在线阅读 下载PDF
基于深度学习的视杯视盘分割与青光眼筛查 被引量:1
13
作者 董林 李峰 《控制工程》 CSCD 北大核心 2023年第5期894-902,共9页
眼底图像中的OD和OC分割精度不高,且没有充分考虑二者空间信息的问题,为实现联合分割OC/OD,更加准确地测量杯盘比,实现青光眼筛查,提出了一种端到端的基于区域的深度卷积神经网络(region-based deep convolutional neural network,R-DC... 眼底图像中的OD和OC分割精度不高,且没有充分考虑二者空间信息的问题,为实现联合分割OC/OD,更加准确地测量杯盘比,实现青光眼筛查,提出了一种端到端的基于区域的深度卷积神经网络(region-based deep convolutional neural network,R-DCNN)。首先,在主干网络Res Net34中引入密集原子卷积以提取更密集的特征图。然后,设计了DPN和CPN模块产生OD和OC的候选边界框。之后,考虑到OD和OC之间位置的关系,使用盘注意力模块连接DPN模块和CPN模块,在精确获得OD和OC边界后,计算CDR作为青光眼筛查的指标。最后,将所提出的网络在公开的DRISHIT-GS和RIM-ONE r3数据集进行训练测试。通过与目前主流的先进方法对比,验证了所提网络在OD和OC分割以及青光眼筛查方面的性能,具有广大的应用前景。 展开更多
关键词 青光眼筛查 联合分割 区域深度卷积神经网络 密集空洞卷积 盘注意力模块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部