随着科研工作者人数的不断增加,科技论文的发表数量呈现快速增长的趋势。面对海量的科技论文,文献的归档、录入和分析工作变得越发繁重。当前,针对文献的分类模型主要关注论文的内容信息,而忽略了论文相关的关联信息。为此,本文提出一...随着科研工作者人数的不断增加,科技论文的发表数量呈现快速增长的趋势。面对海量的科技论文,文献的归档、录入和分析工作变得越发繁重。当前,针对文献的分类模型主要关注论文的内容信息,而忽略了论文相关的关联信息。为此,本文提出一种融合内容信息与学术网络的论文表征模型PAITKG (paper analysis by incorporating text and knowledge graph),引入知识图谱嵌入技术对文献的多重关联信息进行表征,采用Adapter微调的SciBERT提取内容特征,并将二者融合。在训练过程中,本文改进了动态对抗损失函数来引导模型更好地关注错误结果,并将该方法在数字人文和多模态学习两个领域的文献数据集上进行实验。在科技文献的学科多标签分类任务上,PAITKG比Baselines有显著改善,很好地提高了分类精度。除此以外,通过上游任务的学习,PAITKG的表征获得了更广泛的应用,在没有任何额外训练的情况下,本文模型提取的特征向量能够较好地应用于主题聚类、学者推荐等分析任务。研究结果表明,PAITKG通过构建并表征论文的学术网络,有效融合了文献的关联信息,提高了对文献数据的理解能力,而且其学习到的表征具有优秀的泛化潜力,能够应用于各种文献分析工作。展开更多
现有相关工程与技术多关注建筑构件几何信息的映射,构件语义信息挖掘侧重于工程项目需要的单一信息,导致BIM(Building Information Modeling)数据在语义交互和智能分析中的潜力未被充分挖掘。该文提出一种基于知识图谱的BIM建筑构件语...现有相关工程与技术多关注建筑构件几何信息的映射,构件语义信息挖掘侧重于工程项目需要的单一信息,导致BIM(Building Information Modeling)数据在语义交互和智能分析中的潜力未被充分挖掘。该文提出一种基于知识图谱的BIM建筑构件语义信息提取方法,首先通过设计语义映射规则将IFC(Industry Foundation Classes)模型的实体、属性、物理信息转化为知识图谱,形成可用于语义分析的结构化语义网络,然后采用TransE嵌入模型对构建的BIM知识图谱进行嵌入学习,通过向量化表示增强信息提取能力。以某三层综合建筑楼为研究对象,提取并构建了包含996个BIM语义节点和2173条关系的知识图谱,进一步采用TransE模型进行语义信息嵌入,对提取结果进行验证。实验结果表明:知识图谱能有效提取BIM建筑构件语义信息,选取最优参数后进行TransE模型嵌入学习,实体语义成功率为97.27%,该方法能够精准捕捉建筑构件各类语义信息的关键内容,减少信息遗漏和提取错误,为BIM模型信息分析和决策提供了新思路。展开更多
文摘随着科研工作者人数的不断增加,科技论文的发表数量呈现快速增长的趋势。面对海量的科技论文,文献的归档、录入和分析工作变得越发繁重。当前,针对文献的分类模型主要关注论文的内容信息,而忽略了论文相关的关联信息。为此,本文提出一种融合内容信息与学术网络的论文表征模型PAITKG (paper analysis by incorporating text and knowledge graph),引入知识图谱嵌入技术对文献的多重关联信息进行表征,采用Adapter微调的SciBERT提取内容特征,并将二者融合。在训练过程中,本文改进了动态对抗损失函数来引导模型更好地关注错误结果,并将该方法在数字人文和多模态学习两个领域的文献数据集上进行实验。在科技文献的学科多标签分类任务上,PAITKG比Baselines有显著改善,很好地提高了分类精度。除此以外,通过上游任务的学习,PAITKG的表征获得了更广泛的应用,在没有任何额外训练的情况下,本文模型提取的特征向量能够较好地应用于主题聚类、学者推荐等分析任务。研究结果表明,PAITKG通过构建并表征论文的学术网络,有效融合了文献的关联信息,提高了对文献数据的理解能力,而且其学习到的表征具有优秀的泛化潜力,能够应用于各种文献分析工作。
文摘现有相关工程与技术多关注建筑构件几何信息的映射,构件语义信息挖掘侧重于工程项目需要的单一信息,导致BIM(Building Information Modeling)数据在语义交互和智能分析中的潜力未被充分挖掘。该文提出一种基于知识图谱的BIM建筑构件语义信息提取方法,首先通过设计语义映射规则将IFC(Industry Foundation Classes)模型的实体、属性、物理信息转化为知识图谱,形成可用于语义分析的结构化语义网络,然后采用TransE嵌入模型对构建的BIM知识图谱进行嵌入学习,通过向量化表示增强信息提取能力。以某三层综合建筑楼为研究对象,提取并构建了包含996个BIM语义节点和2173条关系的知识图谱,进一步采用TransE模型进行语义信息嵌入,对提取结果进行验证。实验结果表明:知识图谱能有效提取BIM建筑构件语义信息,选取最优参数后进行TransE模型嵌入学习,实体语义成功率为97.27%,该方法能够精准捕捉建筑构件各类语义信息的关键内容,减少信息遗漏和提取错误,为BIM模型信息分析和决策提供了新思路。