In this work, incompressible and compressible flows of background gas are characterized in argon inductively coupled plasma by using a fluid model, and the respective influence of the two flows on the plasma propertie...In this work, incompressible and compressible flows of background gas are characterized in argon inductively coupled plasma by using a fluid model, and the respective influence of the two flows on the plasma properties is specified. In the incompressible flow, only the velocity variable is calculated, while in the compressible flow, both the velocity and density variables are calculated. The compressible flow is more realistic; nevertheless, a comparison of the two types of flow is convenient for people to investigate the respective role of velocity and density variables. The peripheral symmetric profile of metastable density near the chamber sidewall is broken in the incompressible flow. At the compressible flow, the electron density increases and the electron temperature decreases. Meanwhile, the metastable density peak shifts to the dielectric window from the discharge center, besides for the peripheral density profile distortion, similar to the incompressible flow.The velocity profile at incompressible flow is not altered when changing the inlet velocity, whereas clear peak shift of velocity profile from the inlet to the outlet at compressible flow is observed as increasing the gas flow rate. The shift of velocity peak is more obvious at low pressures for it is easy to compress the rarefied gas. The velocity profile variations at compressible flow show people the concrete residing processes of background molecule and plasma species in the chamber at different flow rates. Of more significance is it implied that in the usual linear method that people use to calculate the residence time, one important parameter in the gas flow dynamics, needs to be rectified. The spatial profile of pressure simulated exhibits obvious spatial gradient. This is helpful for experimentalists to understand their gas pressure measurements that are always taken at the chamber outlet. At the end, the work specification and limitations are listed.展开更多
In order to study the influence of gas-liquid two-phase flow on the performance and internal flow field of a centrifugal pump,the steady three-dimensional flow with different gas volume fractions was simulated by appl...In order to study the influence of gas-liquid two-phase flow on the performance and internal flow field of a centrifugal pump,the steady three-dimensional flow with different gas volume fractions was simulated by applying the Reynolds-average N-S equation and mixture gas-liquid two-phase flow model,and the compressibility of gas was taken into consideration in the simulation. Then the centrifugal pump characteristic and the gas distribution law in different gas volume fractions were analyzed. The computational results show that gas volume fraction has a certain influence on the performance of the centrifugal pump,and the efficiency and head of the pump are on the decline with the increase of it.Static pressure in the impeller increases in the radial direction,but the pressure gradient in the flow direction is different under the different gas volume fractions. The gas volume is distributed mainly in the ipsilateral direction of impeller back shroud in the flow channel of the volute. On the suction side of the blade inlet there is an obvious low-pressure area,which causes bubbles agglutination and higher gas volume fraction. With the gas entering passage flow,gas volume fraction in the suction decreases and the pressure surface rises gradually. Higher gas volume fraction causes air blocking phenomenon in the flow passage and the discharge capacity reduces. The increase of gas volume makes the turbulent motion within the impeller more and more intense,which leads to more and more energy loss.展开更多
An additional potential energy distribution function is introduced on the basis of previous D3Q25 model,and the equilibrium distribution function of D3Q25 is obtained by spherical function.A novel three-dimensional(3D...An additional potential energy distribution function is introduced on the basis of previous D3Q25 model,and the equilibrium distribution function of D3Q25 is obtained by spherical function.A novel three-dimensional(3D)shifted lattice model is proposed,therefore a shifted lattice model is introduced into D3Q25.Under the finite volume scheme,several typical compressible calculation examples are used to verify whether the numerical stability of the D3Q25 model can be improved by adding the shifted lattice model.The simulation results show that the numerical stability is indeed improved after adding the shifted lattice model.展开更多
The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical ...The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical aluminum alloy 7050-T7451. Combined high-speed orthogonal cutting experiments with the cutting process simulations, the data relationship of high temperature, high strain rate and large strain in high-speed cutting is modified. The Johnson-Cook empirical model considering the effects of strain hardening, strain rate hardening and thermal softening is selected to describe the data relationship in high-speed cutting, and the material constants of flow stress constitutive model for aluminum alloy 7050-T7451 are determined. Finally, the constitutive model of aluminum alloy 7050-T7451 is established through experiment and simulation verification in high-speed cutting. The model is proved to be reasonable by matching the measured values of the cutting force with the estimated results from FEM simulations.展开更多
The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study o...The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study of compressible nonconservative two-fluid model, drift-flux model and viscous liquid-gas two-phase flow model. We give the research developments of these three two-phase flow models, respectively. In the last part, we give some open problems about the above models.展开更多
生活垃圾由于组成成分的多样性及分层填埋,其孔隙呈不均匀分布,并且水平向多于竖向。填埋体中的渗流存在明显的优先流效应,各向异性显著并受上覆压力等因素影响。基于Poiseuille方程,根据上覆压力作用下生活垃圾孔隙形状、孔隙尺寸分布...生活垃圾由于组成成分的多样性及分层填埋,其孔隙呈不均匀分布,并且水平向多于竖向。填埋体中的渗流存在明显的优先流效应,各向异性显著并受上覆压力等因素影响。基于Poiseuille方程,根据上覆压力作用下生活垃圾孔隙形状、孔隙尺寸分布及孔隙排列方向分布特征,提出了基于优先流及各向异性的饱和渗流模型。揭示了新鲜生活垃圾分布变化规律,0~200 k Pa,大孔隙逐渐消失,平均孔隙直径与可排水孔隙率呈指数下降,孔隙排列角度逐渐水平向倾斜。采用新建饱和渗流模型进行分析计算,确定采用可排水孔隙率可比总孔隙率更好地模拟垃圾孔隙渗流特性。渗流由大孔隙优先流主导,0~600 k Pa内计算获得新鲜垃圾水平向饱和渗透系数变化范围为10^(-2)~10^(-5)cm/s。给出了渗流各向异性值的计算公式,渗流各向异性值大体随上覆压力增加而增大,并与初始孔隙排列角度相关;0~600 k Pa内计算得新鲜垃圾渗流各向异性值变化范围为1~10。展开更多
基金Project supported by the National Natural Science Foundations of China(Grant No.11305023)
文摘In this work, incompressible and compressible flows of background gas are characterized in argon inductively coupled plasma by using a fluid model, and the respective influence of the two flows on the plasma properties is specified. In the incompressible flow, only the velocity variable is calculated, while in the compressible flow, both the velocity and density variables are calculated. The compressible flow is more realistic; nevertheless, a comparison of the two types of flow is convenient for people to investigate the respective role of velocity and density variables. The peripheral symmetric profile of metastable density near the chamber sidewall is broken in the incompressible flow. At the compressible flow, the electron density increases and the electron temperature decreases. Meanwhile, the metastable density peak shifts to the dielectric window from the discharge center, besides for the peripheral density profile distortion, similar to the incompressible flow.The velocity profile at incompressible flow is not altered when changing the inlet velocity, whereas clear peak shift of velocity profile from the inlet to the outlet at compressible flow is observed as increasing the gas flow rate. The shift of velocity peak is more obvious at low pressures for it is easy to compress the rarefied gas. The velocity profile variations at compressible flow show people the concrete residing processes of background molecule and plasma species in the chamber at different flow rates. Of more significance is it implied that in the usual linear method that people use to calculate the residence time, one important parameter in the gas flow dynamics, needs to be rectified. The spatial profile of pressure simulated exhibits obvious spatial gradient. This is helpful for experimentalists to understand their gas pressure measurements that are always taken at the chamber outlet. At the end, the work specification and limitations are listed.
基金The National Natural Science Foundation of China(51679196,51879216,51339005)
文摘In order to study the influence of gas-liquid two-phase flow on the performance and internal flow field of a centrifugal pump,the steady three-dimensional flow with different gas volume fractions was simulated by applying the Reynolds-average N-S equation and mixture gas-liquid two-phase flow model,and the compressibility of gas was taken into consideration in the simulation. Then the centrifugal pump characteristic and the gas distribution law in different gas volume fractions were analyzed. The computational results show that gas volume fraction has a certain influence on the performance of the centrifugal pump,and the efficiency and head of the pump are on the decline with the increase of it.Static pressure in the impeller increases in the radial direction,but the pressure gradient in the flow direction is different under the different gas volume fractions. The gas volume is distributed mainly in the ipsilateral direction of impeller back shroud in the flow channel of the volute. On the suction side of the blade inlet there is an obvious low-pressure area,which causes bubbles agglutination and higher gas volume fraction. With the gas entering passage flow,gas volume fraction in the suction decreases and the pressure surface rises gradually. Higher gas volume fraction causes air blocking phenomenon in the flow passage and the discharge capacity reduces. The increase of gas volume makes the turbulent motion within the impeller more and more intense,which leads to more and more energy loss.
基金the Youth Program of the National Natural Science Foundation of China(Grant Nos.11972272,12072246,and 12202331)the National Key Project,China(Grant No.GJXM92579)the Natural Science Basic Research Program of Shaanxi Province,China(Program No.2022JQ-028)。
文摘An additional potential energy distribution function is introduced on the basis of previous D3Q25 model,and the equilibrium distribution function of D3Q25 is obtained by spherical function.A novel three-dimensional(3D)shifted lattice model is proposed,therefore a shifted lattice model is introduced into D3Q25.Under the finite volume scheme,several typical compressible calculation examples are used to verify whether the numerical stability of the D3Q25 model can be improved by adding the shifted lattice model.The simulation results show that the numerical stability is indeed improved after adding the shifted lattice model.
文摘The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical aluminum alloy 7050-T7451. Combined high-speed orthogonal cutting experiments with the cutting process simulations, the data relationship of high temperature, high strain rate and large strain in high-speed cutting is modified. The Johnson-Cook empirical model considering the effects of strain hardening, strain rate hardening and thermal softening is selected to describe the data relationship in high-speed cutting, and the material constants of flow stress constitutive model for aluminum alloy 7050-T7451 are determined. Finally, the constitutive model of aluminum alloy 7050-T7451 is established through experiment and simulation verification in high-speed cutting. The model is proved to be reasonable by matching the measured values of the cutting force with the estimated results from FEM simulations.
基金supported by the National Natural Science Foundation of China(11722104,11671150)supported by the National Natural Science Foundation of China(11571280,11331005)+3 种基金supported by the National Natural Science Foundation of China(11331005,11771150)by GDUPS(2016)the Fundamental Research Funds for the Central Universities of China(D2172260)FANEDD No.201315
文摘The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study of compressible nonconservative two-fluid model, drift-flux model and viscous liquid-gas two-phase flow model. We give the research developments of these three two-phase flow models, respectively. In the last part, we give some open problems about the above models.
文摘生活垃圾由于组成成分的多样性及分层填埋,其孔隙呈不均匀分布,并且水平向多于竖向。填埋体中的渗流存在明显的优先流效应,各向异性显著并受上覆压力等因素影响。基于Poiseuille方程,根据上覆压力作用下生活垃圾孔隙形状、孔隙尺寸分布及孔隙排列方向分布特征,提出了基于优先流及各向异性的饱和渗流模型。揭示了新鲜生活垃圾分布变化规律,0~200 k Pa,大孔隙逐渐消失,平均孔隙直径与可排水孔隙率呈指数下降,孔隙排列角度逐渐水平向倾斜。采用新建饱和渗流模型进行分析计算,确定采用可排水孔隙率可比总孔隙率更好地模拟垃圾孔隙渗流特性。渗流由大孔隙优先流主导,0~600 k Pa内计算获得新鲜垃圾水平向饱和渗透系数变化范围为10^(-2)~10^(-5)cm/s。给出了渗流各向异性值的计算公式,渗流各向异性值大体随上覆压力增加而增大,并与初始孔隙排列角度相关;0~600 k Pa内计算得新鲜垃圾渗流各向异性值变化范围为1~10。