A series of Ni/ZSM-5 containing a small amount of Ni was prepared by an ion exchanged method.The impact of the n(SiO_(2))/n(Al_(2)O_(3))ratio on the catalytic activity was studied using the samples 0.09Ni/ZSM-5(60)and...A series of Ni/ZSM-5 containing a small amount of Ni was prepared by an ion exchanged method.The impact of the n(SiO_(2))/n(Al_(2)O_(3))ratio on the catalytic activity was studied using the samples 0.09Ni/ZSM-5(60)and 0.09Ni/ZSM-5(130).To determine the interaction between the Ni species and acid sites on the surface of the catalyst,the catalysts were characterized by N2 adsorption-desorption,X-ray diffraction(XRD),scanning electron microscopy(SEM),and UV-vis spectroscopy.The performance of the catalysts for the catalytic oligomerization of 1-hexene was investigated in detail.The nickel species were found to be uniformly distributed in all the catalysts.It was discovered that the oligomerization activity of the catalyst can be improved using Ni species;however,the contribution of Brønsted acids in oligomerization reactions is greater than that of Ni sites and Lewis acids.展开更多
The oligomerization of ethylene in FCC dry gas over HZSM-5 catalyst with different Si/A12 ratios was studied. The effect of acid density of catalyst on the oligomerization of ethylene was discussed. By increasing the ...The oligomerization of ethylene in FCC dry gas over HZSM-5 catalyst with different Si/A12 ratios was studied. The effect of acid density of catalyst on the oligomerization of ethylene was discussed. By increasing the acid density of catalyst, ethylene conversion showed a linear increase, while the yields of olefins decreased when the acid density of catalyst exceeded 0.14mmolNH3/g owing to a promotion of hydrogen transfer reaction. Through comparing the average distance between acid sites on catalyst with kinetic diameters of olefins, it was found that the dimerization of ethylene was not restrained by the sparse distribution of acid sites, while the hydrogen transfer reaction of C3 and C4 olefins was limited. On these bases, a conclusion is proposed that the dimerization of ethylene proceeded via Eley-Rideal mechanism, while the hydrogen transfer reaction of C3 and C4 olefins followed the Langmuir-Hinshelwood mechanism.展开更多
The objective of this study is to explore the optimum composition of Y and ZSM-5 zeolites to develop novel catalysts for obtaining lower gasoline olefins content and higher propylene yield. Five composite zeolite cata...The objective of this study is to explore the optimum composition of Y and ZSM-5 zeolites to develop novel catalysts for obtaining lower gasoline olefins content and higher propylene yield. Five composite zeolite catalysts with varying Y zeolite/ZSM-5 zeolite ratios have been prepared in this work to investigate the synergy between the Y zeolite and ZSM-5 zeolite on the selectivity to protolytic cracking, β-scission, oligomerization, and hydrogen transfer reactions using a FCC naphtha feedstock at 480 ℃ in a confined fluidized bed reactor. Experimental results showed that the composite catalyst with a Y zeolite/ZSM-5 zeolite ratio of 1:4 had the highest protolytic cracking and β-scission ability, which was even higher than that of pure ZSM-5 catalyst. On the other hand, the catalyst with a Y zeolite/ZSM-5 zeolite ratio of 3:2 exhibited the strongest hydrogen transfer functionality while the pure Y zeolite based catalyst had the highest oligomerization ability. For all the catalysts tested, increasing conversion enhanced the selectivity to protolytic cracking and hydrogen transfer reactions but reduced the selectivity to β-scission reaction. However, no clear trend was identified for the selectivity to oligomerization when an increased conversion was experienced.展开更多
1-Decene was oligomerized over the supported AlCl3/γ-Al2O3 catalyst in a fixed-bed reactor. The effects of temperature and LHSV on oligomerization of 1-decene were investigated and the synthetic PAO was characterized...1-Decene was oligomerized over the supported AlCl3/γ-Al2O3 catalyst in a fixed-bed reactor. The effects of temperature and LHSV on oligomerization of 1-decene were investigated and the synthetic PAO was characterized with GC technique. Furthermore, the life of immobilized catalyst was tested and the mechanism of catalyst deactivation was discussed. The results showed that with an increasing temperature, the PAO yield increased and the kinematic viscosity of oil decreased. The GC results indicated that the synthesized PAO was a mixture consisting of dimers, trimers, tetramers and pentamers. The results of chloride content measurements and BET tests showed that catalyst deactivation could be mainly attributed to the loss of active components.展开更多
Novel Ni(II)-based acetyliminopyridine complexes 1b, 2b, 3b (1-3b), which are synthesized from ligands 1a, 2a, 3a (1-3a) and [NiCl2(DME)], are suitable precursors for the catalysts that are necessary for ethyl...Novel Ni(II)-based acetyliminopyridine complexes 1b, 2b, 3b (1-3b), which are synthesized from ligands 1a, 2a, 3a (1-3a) and [NiCl2(DME)], are suitable precursors for the catalysts that are necessary for ethylene oligomerization and polymerization reactions, activated by methylaluminoxane (MAO). The MAO-treated 1-3b presents an active catalytic center, which may oligomerize and polymerize ethylene to produce linear α-olefins and polyethylene, respectively. The molecular weight distributions of oligomers that are obtained are in good agreement with the Schulz-Flory rules for oligomers〉C4. The activity of 3b-MAO complex is 6.3×10^7 g/(molNi.h) at 50 ℃. The activities and molecular weight distributions of oligomers show significant reliance on the structures of catalyst precursors.展开更多
Ethylene oligomerization using ZSM-5 zeolite was investigated to study the role of Bronsted acid sites in the formation of higher hydrocarbons. The oligomerization of olefins, dependent on the acidity of ZSM-5 zeolite...Ethylene oligomerization using ZSM-5 zeolite was investigated to study the role of Bronsted acid sites in the formation of higher hydrocarbons. The oligomerization of olefins, dependent on the acidity of ZSM-5 zeolite, is an important step in the conversion of natural gas to liquid fuels. The framework Si/Al ratio reflects the number of potential acid sites and the acid strength of the ZSM-5 catalyst. ZSM-5 with the mole ratio SiO2/Al2O3 equal to 30 was dealuminated for different periods of time according to the acidic ion-exchange method to produce ZSM-5 with various Si/Al ratios. The FT-IR analysis revealed that the integrated framework aluminum band, non-framework aluminum band, and silanol groups areas of the ZSM-5 zeolites decreased after being dealuminated. The performance of the dealuminated zeolite was tested for ethylene oligomerization. The results demonstrated that the dealumination of ZSM-5 led to higher ethylene conversion, but the gasoline selectivity was reduced compared to the performance of a ZSM-5 zeolite. The characterization results revealed the amount of aluminum in the zeolitic framework, the crystallinity of the ZSM-5 zeolite, and the Si/Al ratio affected the formation of Bronsted acid sites. The number of the Bronsted acid sites on the catalyst active sites is important in the olefin conversion to liquid hydrocarbons.展开更多
Several nickel complexes [N,N]NiBr_2, in which [N,N] indicates bidentatenitrogen-containing ligands (1: [N,N]=N-(2,6-diisopropylphenyl)pyridine-2-carboxaldimine(C_(18)H_(22)N_2); 2: N-(2,6-diisopropylphenyl)-6-methylp...Several nickel complexes [N,N]NiBr_2, in which [N,N] indicates bidentatenitrogen-containing ligands (1: [N,N]=N-(2,6-diisopropylphenyl)pyridine-2-carboxaldimine(C_(18)H_(22)N_2); 2: N-(2,6-diisopropylphenyl)-6-methylpyridine-2-carboxaldimine (C_(19)H_(24)N_2);3: N-(2,4,6-trimethylphenyl)pyridine-2-carboxaldimine(C_(15)H_(16)N_2); 4:N-(2,4,6-trimethylphenyl)-6-methylpyridine-2-carboxaldimine (C_(16)H_(18)-N_2) were synthesized.Some of the nickel complexes exhibit high activity for ethylene oligomerizatiori in the presence ofan organoaluminum activator. The main factor affecting the activity and the structure of oligomersis the steric effect of substituents on [N,N] ligands. Methylaluminoxane (MAO) -activated catalystsshowed higher activities and produced oligomers with higher molecular weight than Et_2AlCl-activatedones. The oligomerization in toluene rather than hexane results in much higher activity, and theoligomers produced in toluene have relatively high molecular weight. With activation of MAO orEt_2AlCl, the [N,N]NiBr_2 system tended to produce highly branched oligomers with low α-olefincontent, but the α-olefin content could be increased by changing the reaction conditions.展开更多
Objective To investigate the effects of stimulant for nucleotide-binding oligomerization domain 1 (NOD1) on secretion of proinflammatory chemokine/cytokines and insulin-dependent glucose uptake in human differentiat...Objective To investigate the effects of stimulant for nucleotide-binding oligomerization domain 1 (NOD1) on secretion of proinflammatory chemokine/cytokines and insulin-dependent glucose uptake in human differentiated adipocytes. Methods Adipose tissues were obtained from patients undergoing liposuction. Stromal vascular cells were extracted and differentiated into adipocytes. A specific ligand for NOD1, was administered to human adipocytes in culture. Nuclear factor-κB transcriptional activity and proinflammatory chemokine/cytokines production were determined by reporter plasmid assay and enzyme-linked immunosorbent assay, respectively. Insulin-stimulated glucose uptake was measured by 2-deoxy-D-[ 3 H] glucose uptake assay. Furthermore, chemokine/cytokine secretion and glucose uptake in adipocytes transfected with small interfering RNA (siRNA) targeting NOD1 upon stimulation of NOD1 ligand were analyzed. Results Nuclear factor-κB transcriptional activity and monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-6, and IL-8 secretion in human adipocytes were markedly increased stimulated with NOD1 ligand (all P〈0.01). Insulin-induced glucose uptake was decreased upon the activation of NOD1 (P〈0.05). NOD1 gene silencing by siRNA reduced NOD1 ligand-induced MCP-1, IL-6, and IL-8 release and increased insulin-induced glucose uptake (all P〈0.05). Conclusion NOD1 activation in adipocytes might be implicated in the onset of insulin resistance.展开更多
In order to make more liquid products like gasoline, the oligomerition of a C4 feedstock taking placeon catalyst containing ZSM-5 was studied in a pressurized reactor. The products were C5- gas, liquid hydro-carbons a...In order to make more liquid products like gasoline, the oligomerition of a C4 feedstock taking placeon catalyst containing ZSM-5 was studied in a pressurized reactor. The products were C5- gas, liquid hydro-carbons and coke. During the reaction on the catalyst BO-1, when the WHSV was 0.71h-1 and total pressurewas 4.0MPa, the C5+ product yield reached a maximum at a temperature around 320℃. As oligomerizationreaction was the dominating one, there were minor C9 hydrocarbons in liquid products and the main productswere C7 and C8 olefins and n- C10 paraffins. When the temperature was higher than 286℃, a small amount of C9hydrocarbons was formed and more normal and isomeric paraffins other than olefins were formed in products.Gasoline yield increased linearly with a rising total pressure under the same operating conditions.展开更多
Objective To investigate the potential role of nucleotide-binding oligomerization domain 1 (NOD1), a component of the innate immune system, in mediating lipid-induced insulin resistance in adipocytes. Methods Adipo...Objective To investigate the potential role of nucleotide-binding oligomerization domain 1 (NOD1), a component of the innate immune system, in mediating lipid-induced insulin resistance in adipocytes. Methods Adipocytes from Toll-like receptor 4 deficiency mice were used for stimulation experiments. The effect of oleate/palmitate mixture on nuclear factor-κB (NF-κB) activation was analyzed by reporter plasmid assay. The release of proinflammatory chemokine/cytokines production was determined by using real-time PCR. Insulin-stimulated glucose uptake was measured by 2-deoxy-D-[SH] glucose uptake assay. Chemokine/cytokine expression and glucose uptake in adipocytes transfected with small interfering RNA (siRNA) targeting NOD 1 upon fatty acids treatment were analyzed. Results Oleate/palmitate mixture activated the NF-κB pathway and induced interleukin-6, tumor necrosis factor-R, and monocyte chemoattractant protein-1 mRNA expressions in adipocytes from mice deficient in Toll-like receptor 4, and these effects were blocked by siRNA targeting NOD1. Furthermore, saturated fatty acids decreased the ability of insulin-stimulated glucose uptake. Importantly, siRNA targeting NOD 1 partially reversed saturated fatty acid-induced suppression of insulin-induced glucose uptake. Conclusion NOD1 might play an important role in saturated fatty acid-induced insulin resistance in adipocytes, suggesting a mechanism by which reduced NOD1 activity confers beneficial effects on insulin action.展开更多
The acidities of different Si O2/Al2O3 ratio ZSM-5 zeolites, CBV3024 E, CBV5524 G and CBV8014 were investigated with temperature-programmed desorption of ammonia and diffuse reflectance infrared Fourier transform spec...The acidities of different Si O2/Al2O3 ratio ZSM-5 zeolites, CBV3024 E, CBV5524 G and CBV8014 were investigated with temperature-programmed desorption of ammonia and diffuse reflectance infrared Fourier transform spectroscopy, and their catalytic performances were evaluated to screen the optimal CBV8014 catalyst for ethylene oligomerization. The mesoporosity development in CBV8014 zeolite was conducted by desilication in alkaline medium. The porous characteristics, structural properties and acidic properties of parent and alkali-treated CBV8014 zeolites were studied, and their catalytic performances were evaluated, indicating that CBV8014 treated by 0.2 mol/L NaO H solution has an appropriate mesoporosity development, well preservation of catalyst acidity and crystallinity, good catalytic activity and stability, and high liquid fuel yield for ethylene oligomerization. The effect of reaction pressure on ethylene oligomerization over 0.2HZ catalyst was also investigated, and JP-8 likely hydrocarbon jet fuel was obtained by using 0.2HZ catalyst at 0.344 75 MPa with a high catalyst stability and high liquid yield.展开更多
The active catalysts of the BF_(3)/n-C_(4)H_(9)OH-catalyzed 1-decene oligomerization reaction,as well as the distribution of the reaction products,was investigated by molecular simulation.The calculation results show ...The active catalysts of the BF_(3)/n-C_(4)H_(9)OH-catalyzed 1-decene oligomerization reaction,as well as the distribution of the reaction products,was investigated by molecular simulation.The calculation results show that(BF_(3))_(2)·n-C_(4)H_(9)OH catalyzes the 1-decene oligomerization reaction with higher activity compared to BF_(3)·n-C_(4)H_(9)OH,which is the most catalytically active substance in the BF_(3)/n-C_(4)H_(9)OH catalyst system.The reaction energy barriers and heats of reaction of chain initiation,chain growth,and chain termination in BF_(3)/n-C_(4)H_(9)OH-catalyzed 1-decene oligomerization are calculated to reveal the product distribution.The calculation results show that the contents of the oligomerization reaction products in descending order are trimer,tetramer,pentamer,and dimer.The calculated results were consistent with the experimentally obtained product distribution.展开更多
In this paper, the propene oligomerization reaction catalyzed by phosphotungstic acid supported on two kinds of silica gel was studied, it had been found out that the conversion of propene catalyzed by the type A sili...In this paper, the propene oligomerization reaction catalyzed by phosphotungstic acid supported on two kinds of silica gel was studied, it had been found out that the conversion of propene catalyzed by the type A silica gel-phosphotung- stic acid catalyst was 3.38 m%, while the conversion of propene catalyzed by the type B silica gel-phosphotungstic acid catalyst was 90.1 m% with a nonene selectivity of 42.33 m%, and a dodecene selectivity of 31.79 m%. The influence of reaction temperature, pressure and liquid hourly space velocity (LHSV) on the reaction catalyzed by the type B silica gel- phosphotungstic acid catalyst was investigated. It had been verified that when the reaction temperature increased from 170 ~C to 190 ~C, the conversion of propene increased while the selectivity of nonene and dodecene decreased; when the re- action pressure increased from 3.5 MPa to 4.5 MPa, the conversion of propene increased also, and the selectivity of nonene and dodecene changed very little. The conversion of propene at a space velocity of between 0.5 h-1 and 1.0 h-~ was higher than that achieved at 2.0 h-~, but the selectivity of nonene and dodecene did not show regular fluctuations. An optimum conversion of propene (91.05 m%) and an optimum selectivity of nonene and dodecene (89.51 m%) could be achieved at a reaction temperature of 170 ~C, a reaction pressure of 4.5MPa, and a LHSV of 1.0 fit. The experiments on catalyst life showed that the activity of the type B silica gel-phosphotungstic acid catalyst could be only maintained in 25 hours, and the reason was explained also.展开更多
Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides dista...Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides distasonis has a positive regulatory effect on lipid metabolism and bile acids(BAs)profile.Oligomeric procyanidins have been confirmed to be conducive to the prevention and treatment of AS,whose antiatherosclerotic effect may be associated with the promotion of gut probiotics.However,it remains unclear whether and how oligomeric procyanidins and P.distasonis combined(PPC)treatment can effectively alleviate high-fat diet(HFD)-induced AS.In this study,PPC treatment was found to significantly decrease atherosclerotic lesion,as well as alleviate the lipid metabolism disorder,inflammation and oxidative stress injury in ApoE^(-/-)mice.Surprisingly,targeted metabolomics demonstrated that PPC intervention altered the BA profile in mice by regulating the ratio of secondary BAs to primary BAs,and increased fecal BAs excretion.Further,quantitative polymerase chain reaction(qPCR)analysis showed that PPC intervention facilitated reverse cholesterol transport by upregulating Srb1 expression;In addition,PPC intervention promoted BA synthesis from cholesterol in liver by upregulating Cyp7a1 expression via suppression of the farnesoid X receptor(FXR)pathway,thus exhibiting a significant serum cholesterol-lowering effect.In summary,PPC attenuated HFD-induced AS in ApoE^(-/-)mice,which provides new insights into the design of novel and efficient anti-atherosclerotic strategies to prevent AS based on probiotics and prebiotics.展开更多
The capture and characterization of oligomers are extremely important in the studies of amyloid aggregation of proteins and peptides.Oligomers are critical intermediates that can impact the structures of amyloid fibri...The capture and characterization of oligomers are extremely important in the studies of amyloid aggregation of proteins and peptides.Oligomers are critical intermediates that can impact the structures of amyloid fibrils.Moreover,it is widely accepted that oligomers are the most toxic species along the aggregation pathway[1e4].The studies of oligomers are believed to shed light on the molecular mechanism of amyloid fibrillation and probably the medical clues for related diseases.In vitro investigations of amyloid oligomers are challenging due to their transient and polymorphic nature[5].This is particularly evident in the case of human type-2 diabetes-associated islet amyloid polypeptide(hIAPP),which tends to rapidly form polymorphic fibrils within minutes[6].Notably,hIAPP demonstrates a higher propensity for rapid aggregation compared to other amyloid proteins such as a-synuclein[7].展开更多
Adsorption desulfurization performance of Na Y,HY and Ce HY zeolites is evaluated in a miniature fixedbed flow by model gasoline containing with thiophene,tetrahydrothiophene,2-methylthiophene,benzothiophene or mixed ...Adsorption desulfurization performance of Na Y,HY and Ce HY zeolites is evaluated in a miniature fixedbed flow by model gasoline containing with thiophene,tetrahydrothiophene,2-methylthiophene,benzothiophene or mixed sulfur compounds.The structural properties of adsorbents are characterized by XRD,N2-adsorption and XPS techniques.Adsorption desulfurization mechanisms of these sulfur compounds over the specific active sites of adsorbents as a major focus of this work,have been systematically investigated by using in situ FT-IR spectroscopy with single and double probing molecules.Desulfurization experimental results show that the Ce HY adsorbent exhibits superior adsorption sulfur capacity at breakthrough point of zero sulfur for ultra-deep removal of each thiophenic sulfur compound,especially in the capture of aromatic 2-methylthiophene(about ca.28.6 mgS/gadsorbent).The results of in situ FT-IR with single probing molecule demonstrate an important finding that high oligomerization ability of thiophene or 2-methylthiophene on the CeHY can promote the breakthrough adsorption sulfur capacity,mainly resulting from the synergy between Br?nsted acid sites and Ce(III)hydroxylated species active sites located in the supercages of Ce HY.Meanwhile,the result of in situ FT-IR with double probing molecules further reveals the essence of oligomerization reactions of thiophene and 2-methylthiophene molecules on those specific active sites.By contrast,the oligomerization reaction of benzothiophene molecules on the active sites of Ce HY cannot occur due to the restriction of cavity size of supercages,but they can be adsorbed on the Br?nsted acid sites via protonation,and on Ce(III)hydroxylated species and extra-framework aluminum hydroxyls species via direct"S-M"bonding interaction.As to the tetrahydrothiophene,adsorption mechanism is similar to that of benzothiophene,except in the absence of protonation.The paper can provide a new design idea of specific adsorption active sites in excellent desulfurization adsorbents for elevating higher quality of FCC gasoline in the future.展开更多
Soluble peptides or proteins can self-aggregate into insoluble, ordered amyloid fibrils under appropriate conditions. These amyloid aggregates are the hallmarks of several human diseases ranging from neurodegenerative...Soluble peptides or proteins can self-aggregate into insoluble, ordered amyloid fibrils under appropriate conditions. These amyloid aggregates are the hallmarks of several human diseases ranging from neurodegenerative disorders to sys- temic amyloidoses. In this review, we first introduce the common structural features of amyloid fibrils and the amyloid fibrillation kinetics determined from experimental studies. Then, we discuss the structural models of Alzheimer's amyloid- β (Aβ) fibrils derived from solid-state nuclear magnetic resonance spectroscopy. On the computational side, molecular dynamics simulations can provide atomic details of structures and the underlying oligomerization mechanisms. We finally summarize recent progress in atomistic simulation studies on the oligomerization of β (including full-length Af and its fragments) and the influence of carbon nanoparticles.展开更多
The oligomerzation reactions on different catalysts were investigated and discussed. 1-Octene, 1-decene, 1-do- decene, a mixture of olefins (with a mass ratio of w(l-octene): w(1-decenc):w(1-dodecene) equatin...The oligomerzation reactions on different catalysts were investigated and discussed. 1-Octene, 1-decene, 1-do- decene, a mixture of olefins (with a mass ratio of w(l-octene): w(1-decenc):w(1-dodecene) equating to 30:40:30), and the products from paraffin cracking were oligomerized on the AlCl3/TiC14 catalyst. The results indicated that the AlCl3 catalyst led to severe coking reaction. With an increase in carbon number of alpha-olefins, the freezing point of oligomers increased and the kinematic viscosity decreased. The oligomers formed from the mixed olefins and the paraffin cracking products showed higher kinematic viscosity. Normal paraffins contained in the cracked products could increase the freezing point of oligomers. Furthermore, the distillation range of oligomers obtained from the cracked products was close to those of oligo- mers originated from 1-octene and 1-decene, while the oligomers obtained from the mixed olefins and 1-dodecene had simi- lar distillation ranges.展开更多
A dual-bed catalytic system is proposed for the direct conversion of methane to liquid hydrocarbons. In this system, methane is converted in the first stage to oxidative coupling of methane (OCM) products by selecti...A dual-bed catalytic system is proposed for the direct conversion of methane to liquid hydrocarbons. In this system, methane is converted in the first stage to oxidative coupling of methane (OCM) products by selective catalytic oxidation with oxygen over La-supported MgO catalyst. The second bed, comprising of the HZSM-5 zeolite catalyst, is used for the oligomerization of OCM light hydrocarbon products to liquid hydrocarbons. The effects of temperature (650-800 ℃), methane to oxygen ratio (4-10), and SIO2/Al2O3 ratio of the HZSM-5 zeolite catalyst on the process are studied. At higher reaction temperatures, there is considerable dealumination of HZSM-5, and thus its catalytic performance is reduced. The acidity of HZSM-5 in the second bed is responsible for the oligomerization reaction that leads to the formation of liquid hydrocarbons. The activities of the oligomerization sites were unequivocally affected by the SiO2/Al2O3 ratio. The relation between the acidity and the activity of HZSM-5 is studied by means of TPD-NH3 techniques. The rise in oxygen concentration is not beneficial for the C5+ selectivity, where the combustion reaction of intermediate hydrocarbon products that leads to the formation of carbon oxide (CO+CO2) products is more dominant than the oligomerization reaction. The dual-bed catalytic system is highly potential for directly converting methane to liquid fuels.展开更多
基金Financial support was obtained from the State Key Laboratory of Petroleum Molecular&Process Engineering(24-ZC0607-0099)the Natural Science Foundation of China(21706177 and 22378293).
文摘A series of Ni/ZSM-5 containing a small amount of Ni was prepared by an ion exchanged method.The impact of the n(SiO_(2))/n(Al_(2)O_(3))ratio on the catalytic activity was studied using the samples 0.09Ni/ZSM-5(60)and 0.09Ni/ZSM-5(130).To determine the interaction between the Ni species and acid sites on the surface of the catalyst,the catalysts were characterized by N2 adsorption-desorption,X-ray diffraction(XRD),scanning electron microscopy(SEM),and UV-vis spectroscopy.The performance of the catalysts for the catalytic oligomerization of 1-hexene was investigated in detail.The nickel species were found to be uniformly distributed in all the catalysts.It was discovered that the oligomerization activity of the catalyst can be improved using Ni species;however,the contribution of Brønsted acids in oligomerization reactions is greater than that of Ni sites and Lewis acids.
文摘The oligomerization of ethylene in FCC dry gas over HZSM-5 catalyst with different Si/A12 ratios was studied. The effect of acid density of catalyst on the oligomerization of ethylene was discussed. By increasing the acid density of catalyst, ethylene conversion showed a linear increase, while the yields of olefins decreased when the acid density of catalyst exceeded 0.14mmolNH3/g owing to a promotion of hydrogen transfer reaction. Through comparing the average distance between acid sites on catalyst with kinetic diameters of olefins, it was found that the dimerization of ethylene was not restrained by the sparse distribution of acid sites, while the hydrogen transfer reaction of C3 and C4 olefins was limited. On these bases, a conclusion is proposed that the dimerization of ethylene proceeded via Eley-Rideal mechanism, while the hydrogen transfer reaction of C3 and C4 olefins followed the Langmuir-Hinshelwood mechanism.
基金financial support from the National Key Technology R&D Program (2012BAE05B01) of China
文摘The objective of this study is to explore the optimum composition of Y and ZSM-5 zeolites to develop novel catalysts for obtaining lower gasoline olefins content and higher propylene yield. Five composite zeolite catalysts with varying Y zeolite/ZSM-5 zeolite ratios have been prepared in this work to investigate the synergy between the Y zeolite and ZSM-5 zeolite on the selectivity to protolytic cracking, β-scission, oligomerization, and hydrogen transfer reactions using a FCC naphtha feedstock at 480 ℃ in a confined fluidized bed reactor. Experimental results showed that the composite catalyst with a Y zeolite/ZSM-5 zeolite ratio of 1:4 had the highest protolytic cracking and β-scission ability, which was even higher than that of pure ZSM-5 catalyst. On the other hand, the catalyst with a Y zeolite/ZSM-5 zeolite ratio of 3:2 exhibited the strongest hydrogen transfer functionality while the pure Y zeolite based catalyst had the highest oligomerization ability. For all the catalysts tested, increasing conversion enhanced the selectivity to protolytic cracking and hydrogen transfer reactions but reduced the selectivity to β-scission reaction. However, no clear trend was identified for the selectivity to oligomerization when an increased conversion was experienced.
基金the SINOPEC Corporation for the financial support
文摘1-Decene was oligomerized over the supported AlCl3/γ-Al2O3 catalyst in a fixed-bed reactor. The effects of temperature and LHSV on oligomerization of 1-decene were investigated and the synthetic PAO was characterized with GC technique. Furthermore, the life of immobilized catalyst was tested and the mechanism of catalyst deactivation was discussed. The results showed that with an increasing temperature, the PAO yield increased and the kinematic viscosity of oil decreased. The GC results indicated that the synthesized PAO was a mixture consisting of dimers, trimers, tetramers and pentamers. The results of chloride content measurements and BET tests showed that catalyst deactivation could be mainly attributed to the loss of active components.
基金This work is supported by PetroChina Company Limited (No.030414-01)
文摘Novel Ni(II)-based acetyliminopyridine complexes 1b, 2b, 3b (1-3b), which are synthesized from ligands 1a, 2a, 3a (1-3a) and [NiCl2(DME)], are suitable precursors for the catalysts that are necessary for ethylene oligomerization and polymerization reactions, activated by methylaluminoxane (MAO). The MAO-treated 1-3b presents an active catalytic center, which may oligomerize and polymerize ethylene to produce linear α-olefins and polyethylene, respectively. The molecular weight distributions of oligomers that are obtained are in good agreement with the Schulz-Flory rules for oligomers〉C4. The activity of 3b-MAO complex is 6.3×10^7 g/(molNi.h) at 50 ℃. The activities and molecular weight distributions of oligomers show significant reliance on the structures of catalyst precursors.
文摘Ethylene oligomerization using ZSM-5 zeolite was investigated to study the role of Bronsted acid sites in the formation of higher hydrocarbons. The oligomerization of olefins, dependent on the acidity of ZSM-5 zeolite, is an important step in the conversion of natural gas to liquid fuels. The framework Si/Al ratio reflects the number of potential acid sites and the acid strength of the ZSM-5 catalyst. ZSM-5 with the mole ratio SiO2/Al2O3 equal to 30 was dealuminated for different periods of time according to the acidic ion-exchange method to produce ZSM-5 with various Si/Al ratios. The FT-IR analysis revealed that the integrated framework aluminum band, non-framework aluminum band, and silanol groups areas of the ZSM-5 zeolites decreased after being dealuminated. The performance of the dealuminated zeolite was tested for ethylene oligomerization. The results demonstrated that the dealumination of ZSM-5 led to higher ethylene conversion, but the gasoline selectivity was reduced compared to the performance of a ZSM-5 zeolite. The characterization results revealed the amount of aluminum in the zeolitic framework, the crystallinity of the ZSM-5 zeolite, and the Si/Al ratio affected the formation of Bronsted acid sites. The number of the Bronsted acid sites on the catalyst active sites is important in the olefin conversion to liquid hydrocarbons.
基金This work was subsidized by Special Funds for Major State Basic Research Projects of China(No.G1999064801).
文摘Several nickel complexes [N,N]NiBr_2, in which [N,N] indicates bidentatenitrogen-containing ligands (1: [N,N]=N-(2,6-diisopropylphenyl)pyridine-2-carboxaldimine(C_(18)H_(22)N_2); 2: N-(2,6-diisopropylphenyl)-6-methylpyridine-2-carboxaldimine (C_(19)H_(24)N_2);3: N-(2,4,6-trimethylphenyl)pyridine-2-carboxaldimine(C_(15)H_(16)N_2); 4:N-(2,4,6-trimethylphenyl)-6-methylpyridine-2-carboxaldimine (C_(16)H_(18)-N_2) were synthesized.Some of the nickel complexes exhibit high activity for ethylene oligomerizatiori in the presence ofan organoaluminum activator. The main factor affecting the activity and the structure of oligomersis the steric effect of substituents on [N,N] ligands. Methylaluminoxane (MAO) -activated catalystsshowed higher activities and produced oligomers with higher molecular weight than Et_2AlCl-activatedones. The oligomerization in toluene rather than hexane results in much higher activity, and theoligomers produced in toluene have relatively high molecular weight. With activation of MAO orEt_2AlCl, the [N,N]NiBr_2 system tended to produce highly branched oligomers with low α-olefincontent, but the α-olefin content could be increased by changing the reaction conditions.
基金Supported by Grant from Department of Education of Liaoning Province(2008810)
文摘Objective To investigate the effects of stimulant for nucleotide-binding oligomerization domain 1 (NOD1) on secretion of proinflammatory chemokine/cytokines and insulin-dependent glucose uptake in human differentiated adipocytes. Methods Adipose tissues were obtained from patients undergoing liposuction. Stromal vascular cells were extracted and differentiated into adipocytes. A specific ligand for NOD1, was administered to human adipocytes in culture. Nuclear factor-κB transcriptional activity and proinflammatory chemokine/cytokines production were determined by reporter plasmid assay and enzyme-linked immunosorbent assay, respectively. Insulin-stimulated glucose uptake was measured by 2-deoxy-D-[ 3 H] glucose uptake assay. Furthermore, chemokine/cytokine secretion and glucose uptake in adipocytes transfected with small interfering RNA (siRNA) targeting NOD1 upon stimulation of NOD1 ligand were analyzed. Results Nuclear factor-κB transcriptional activity and monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-6, and IL-8 secretion in human adipocytes were markedly increased stimulated with NOD1 ligand (all P〈0.01). Insulin-induced glucose uptake was decreased upon the activation of NOD1 (P〈0.05). NOD1 gene silencing by siRNA reduced NOD1 ligand-induced MCP-1, IL-6, and IL-8 release and increased insulin-induced glucose uptake (all P〈0.05). Conclusion NOD1 activation in adipocytes might be implicated in the onset of insulin resistance.
文摘In order to make more liquid products like gasoline, the oligomerition of a C4 feedstock taking placeon catalyst containing ZSM-5 was studied in a pressurized reactor. The products were C5- gas, liquid hydro-carbons and coke. During the reaction on the catalyst BO-1, when the WHSV was 0.71h-1 and total pressurewas 4.0MPa, the C5+ product yield reached a maximum at a temperature around 320℃. As oligomerizationreaction was the dominating one, there were minor C9 hydrocarbons in liquid products and the main productswere C7 and C8 olefins and n- C10 paraffins. When the temperature was higher than 286℃, a small amount of C9hydrocarbons was formed and more normal and isomeric paraffins other than olefins were formed in products.Gasoline yield increased linearly with a rising total pressure under the same operating conditions.
基金Supported by the Grant from the Educational Department of Liaoning Province(2008810)
文摘Objective To investigate the potential role of nucleotide-binding oligomerization domain 1 (NOD1), a component of the innate immune system, in mediating lipid-induced insulin resistance in adipocytes. Methods Adipocytes from Toll-like receptor 4 deficiency mice were used for stimulation experiments. The effect of oleate/palmitate mixture on nuclear factor-κB (NF-κB) activation was analyzed by reporter plasmid assay. The release of proinflammatory chemokine/cytokines production was determined by using real-time PCR. Insulin-stimulated glucose uptake was measured by 2-deoxy-D-[SH] glucose uptake assay. Chemokine/cytokine expression and glucose uptake in adipocytes transfected with small interfering RNA (siRNA) targeting NOD 1 upon fatty acids treatment were analyzed. Results Oleate/palmitate mixture activated the NF-κB pathway and induced interleukin-6, tumor necrosis factor-R, and monocyte chemoattractant protein-1 mRNA expressions in adipocytes from mice deficient in Toll-like receptor 4, and these effects were blocked by siRNA targeting NOD1. Furthermore, saturated fatty acids decreased the ability of insulin-stimulated glucose uptake. Importantly, siRNA targeting NOD 1 partially reversed saturated fatty acid-induced suppression of insulin-induced glucose uptake. Conclusion NOD1 might play an important role in saturated fatty acid-induced insulin resistance in adipocytes, suggesting a mechanism by which reduced NOD1 activity confers beneficial effects on insulin action.
文摘The acidities of different Si O2/Al2O3 ratio ZSM-5 zeolites, CBV3024 E, CBV5524 G and CBV8014 were investigated with temperature-programmed desorption of ammonia and diffuse reflectance infrared Fourier transform spectroscopy, and their catalytic performances were evaluated to screen the optimal CBV8014 catalyst for ethylene oligomerization. The mesoporosity development in CBV8014 zeolite was conducted by desilication in alkaline medium. The porous characteristics, structural properties and acidic properties of parent and alkali-treated CBV8014 zeolites were studied, and their catalytic performances were evaluated, indicating that CBV8014 treated by 0.2 mol/L NaO H solution has an appropriate mesoporosity development, well preservation of catalyst acidity and crystallinity, good catalytic activity and stability, and high liquid fuel yield for ethylene oligomerization. The effect of reaction pressure on ethylene oligomerization over 0.2HZ catalyst was also investigated, and JP-8 likely hydrocarbon jet fuel was obtained by using 0.2HZ catalyst at 0.344 75 MPa with a high catalyst stability and high liquid yield.
基金This work was financially supported by China Petrochemical Corporation Project(120055).
文摘The active catalysts of the BF_(3)/n-C_(4)H_(9)OH-catalyzed 1-decene oligomerization reaction,as well as the distribution of the reaction products,was investigated by molecular simulation.The calculation results show that(BF_(3))_(2)·n-C_(4)H_(9)OH catalyzes the 1-decene oligomerization reaction with higher activity compared to BF_(3)·n-C_(4)H_(9)OH,which is the most catalytically active substance in the BF_(3)/n-C_(4)H_(9)OH catalyst system.The reaction energy barriers and heats of reaction of chain initiation,chain growth,and chain termination in BF_(3)/n-C_(4)H_(9)OH-catalyzed 1-decene oligomerization are calculated to reveal the product distribution.The calculation results show that the contents of the oligomerization reaction products in descending order are trimer,tetramer,pentamer,and dimer.The calculated results were consistent with the experimentally obtained product distribution.
文摘In this paper, the propene oligomerization reaction catalyzed by phosphotungstic acid supported on two kinds of silica gel was studied, it had been found out that the conversion of propene catalyzed by the type A silica gel-phosphotung- stic acid catalyst was 3.38 m%, while the conversion of propene catalyzed by the type B silica gel-phosphotungstic acid catalyst was 90.1 m% with a nonene selectivity of 42.33 m%, and a dodecene selectivity of 31.79 m%. The influence of reaction temperature, pressure and liquid hourly space velocity (LHSV) on the reaction catalyzed by the type B silica gel- phosphotungstic acid catalyst was investigated. It had been verified that when the reaction temperature increased from 170 ~C to 190 ~C, the conversion of propene increased while the selectivity of nonene and dodecene decreased; when the re- action pressure increased from 3.5 MPa to 4.5 MPa, the conversion of propene increased also, and the selectivity of nonene and dodecene changed very little. The conversion of propene at a space velocity of between 0.5 h-1 and 1.0 h-~ was higher than that achieved at 2.0 h-~, but the selectivity of nonene and dodecene did not show regular fluctuations. An optimum conversion of propene (91.05 m%) and an optimum selectivity of nonene and dodecene (89.51 m%) could be achieved at a reaction temperature of 170 ~C, a reaction pressure of 4.5MPa, and a LHSV of 1.0 fit. The experiments on catalyst life showed that the activity of the type B silica gel-phosphotungstic acid catalyst could be only maintained in 25 hours, and the reason was explained also.
基金supported by the National Natural Science Foundation of China(32272331)。
文摘Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides distasonis has a positive regulatory effect on lipid metabolism and bile acids(BAs)profile.Oligomeric procyanidins have been confirmed to be conducive to the prevention and treatment of AS,whose antiatherosclerotic effect may be associated with the promotion of gut probiotics.However,it remains unclear whether and how oligomeric procyanidins and P.distasonis combined(PPC)treatment can effectively alleviate high-fat diet(HFD)-induced AS.In this study,PPC treatment was found to significantly decrease atherosclerotic lesion,as well as alleviate the lipid metabolism disorder,inflammation and oxidative stress injury in ApoE^(-/-)mice.Surprisingly,targeted metabolomics demonstrated that PPC intervention altered the BA profile in mice by regulating the ratio of secondary BAs to primary BAs,and increased fecal BAs excretion.Further,quantitative polymerase chain reaction(qPCR)analysis showed that PPC intervention facilitated reverse cholesterol transport by upregulating Srb1 expression;In addition,PPC intervention promoted BA synthesis from cholesterol in liver by upregulating Cyp7a1 expression via suppression of the farnesoid X receptor(FXR)pathway,thus exhibiting a significant serum cholesterol-lowering effect.In summary,PPC attenuated HFD-induced AS in ApoE^(-/-)mice,which provides new insights into the design of novel and efficient anti-atherosclerotic strategies to prevent AS based on probiotics and prebiotics.
文摘The capture and characterization of oligomers are extremely important in the studies of amyloid aggregation of proteins and peptides.Oligomers are critical intermediates that can impact the structures of amyloid fibrils.Moreover,it is widely accepted that oligomers are the most toxic species along the aggregation pathway[1e4].The studies of oligomers are believed to shed light on the molecular mechanism of amyloid fibrillation and probably the medical clues for related diseases.In vitro investigations of amyloid oligomers are challenging due to their transient and polymorphic nature[5].This is particularly evident in the case of human type-2 diabetes-associated islet amyloid polypeptide(hIAPP),which tends to rapidly form polymorphic fibrils within minutes[6].Notably,hIAPP demonstrates a higher propensity for rapid aggregation compared to other amyloid proteins such as a-synuclein[7].
基金financially supported by the National Natural Science Foundation of China (Nos. U1662135 and 21376114, 21076100)by the China National Petroleum Corporation (Grant No. 1001A-01-01-01)
文摘Adsorption desulfurization performance of Na Y,HY and Ce HY zeolites is evaluated in a miniature fixedbed flow by model gasoline containing with thiophene,tetrahydrothiophene,2-methylthiophene,benzothiophene or mixed sulfur compounds.The structural properties of adsorbents are characterized by XRD,N2-adsorption and XPS techniques.Adsorption desulfurization mechanisms of these sulfur compounds over the specific active sites of adsorbents as a major focus of this work,have been systematically investigated by using in situ FT-IR spectroscopy with single and double probing molecules.Desulfurization experimental results show that the Ce HY adsorbent exhibits superior adsorption sulfur capacity at breakthrough point of zero sulfur for ultra-deep removal of each thiophenic sulfur compound,especially in the capture of aromatic 2-methylthiophene(about ca.28.6 mgS/gadsorbent).The results of in situ FT-IR with single probing molecule demonstrate an important finding that high oligomerization ability of thiophene or 2-methylthiophene on the CeHY can promote the breakthrough adsorption sulfur capacity,mainly resulting from the synergy between Br?nsted acid sites and Ce(III)hydroxylated species active sites located in the supercages of Ce HY.Meanwhile,the result of in situ FT-IR with double probing molecules further reveals the essence of oligomerization reactions of thiophene and 2-methylthiophene molecules on those specific active sites.By contrast,the oligomerization reaction of benzothiophene molecules on the active sites of Ce HY cannot occur due to the restriction of cavity size of supercages,but they can be adsorbed on the Br?nsted acid sites via protonation,and on Ce(III)hydroxylated species and extra-framework aluminum hydroxyls species via direct"S-M"bonding interaction.As to the tetrahydrothiophene,adsorption mechanism is similar to that of benzothiophene,except in the absence of protonation.The paper can provide a new design idea of specific adsorption active sites in excellent desulfurization adsorbents for elevating higher quality of FCC gasoline in the future.
基金supported by the National Natural Science Foundation of China(Grant Nos.11274075 and 91227102)
文摘Soluble peptides or proteins can self-aggregate into insoluble, ordered amyloid fibrils under appropriate conditions. These amyloid aggregates are the hallmarks of several human diseases ranging from neurodegenerative disorders to sys- temic amyloidoses. In this review, we first introduce the common structural features of amyloid fibrils and the amyloid fibrillation kinetics determined from experimental studies. Then, we discuss the structural models of Alzheimer's amyloid- β (Aβ) fibrils derived from solid-state nuclear magnetic resonance spectroscopy. On the computational side, molecular dynamics simulations can provide atomic details of structures and the underlying oligomerization mechanisms. We finally summarize recent progress in atomistic simulation studies on the oligomerization of β (including full-length Af and its fragments) and the influence of carbon nanoparticles.
基金the SINOPEC Corporation for the financial support
文摘The oligomerzation reactions on different catalysts were investigated and discussed. 1-Octene, 1-decene, 1-do- decene, a mixture of olefins (with a mass ratio of w(l-octene): w(1-decenc):w(1-dodecene) equating to 30:40:30), and the products from paraffin cracking were oligomerized on the AlCl3/TiC14 catalyst. The results indicated that the AlCl3 catalyst led to severe coking reaction. With an increase in carbon number of alpha-olefins, the freezing point of oligomers increased and the kinematic viscosity decreased. The oligomers formed from the mixed olefins and the paraffin cracking products showed higher kinematic viscosity. Normal paraffins contained in the cracked products could increase the freezing point of oligomers. Furthermore, the distillation range of oligomers obtained from the cracked products was close to those of oligo- mers originated from 1-octene and 1-decene, while the oligomers obtained from the mixed olefins and 1-dodecene had simi- lar distillation ranges.
文摘A dual-bed catalytic system is proposed for the direct conversion of methane to liquid hydrocarbons. In this system, methane is converted in the first stage to oxidative coupling of methane (OCM) products by selective catalytic oxidation with oxygen over La-supported MgO catalyst. The second bed, comprising of the HZSM-5 zeolite catalyst, is used for the oligomerization of OCM light hydrocarbon products to liquid hydrocarbons. The effects of temperature (650-800 ℃), methane to oxygen ratio (4-10), and SIO2/Al2O3 ratio of the HZSM-5 zeolite catalyst on the process are studied. At higher reaction temperatures, there is considerable dealumination of HZSM-5, and thus its catalytic performance is reduced. The acidity of HZSM-5 in the second bed is responsible for the oligomerization reaction that leads to the formation of liquid hydrocarbons. The activities of the oligomerization sites were unequivocally affected by the SiO2/Al2O3 ratio. The relation between the acidity and the activity of HZSM-5 is studied by means of TPD-NH3 techniques. The rise in oxygen concentration is not beneficial for the C5+ selectivity, where the combustion reaction of intermediate hydrocarbon products that leads to the formation of carbon oxide (CO+CO2) products is more dominant than the oligomerization reaction. The dual-bed catalytic system is highly potential for directly converting methane to liquid fuels.