期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
LSTM-MSTCN-XGBoost混合模型的时空数据特征挖掘
1
作者
李阳政
易吉良
《现代电子技术》
北大核心
2025年第16期157-160,共4页
时空数据因具有时空关联性与动态演化性,导致特征挖掘难度大。目前单一维度分析方法难以全面捕捉时空数据的长短期变化特征,易使关键信息丢失。为此,提出一种基于LSTM-MSTCN-XGBoost混合模型的时空数据特征挖掘方法。用OWL对时空数据进...
时空数据因具有时空关联性与动态演化性,导致特征挖掘难度大。目前单一维度分析方法难以全面捕捉时空数据的长短期变化特征,易使关键信息丢失。为此,提出一种基于LSTM-MSTCN-XGBoost混合模型的时空数据特征挖掘方法。用OWL对时空数据进行形式化建模,由LSTM与MSTCN模型分别挖掘长短期特征,输入XGBoost模型融合并输出特征模式识别结果。实验结果表明,所提方法提取的时空数据特征全局时空Moran′s I指数超过0.9,在交通时空数据挖掘中对拥堵特征的刻画也更贴合实际,可为时空数据挖掘及智能决策提供有效途径。
展开更多
关键词
时空数据
特征挖掘
LSTM
模
型
MSTCN
模
型
XGBoost
模
型
owl形式化建模
在线阅读
下载PDF
职称材料
题名
LSTM-MSTCN-XGBoost混合模型的时空数据特征挖掘
1
作者
李阳政
易吉良
机构
湖南工业大学
桂林航天工业学院
出处
《现代电子技术》
北大核心
2025年第16期157-160,共4页
基金
广西自然科学基金项目(2024JJA160324)。
文摘
时空数据因具有时空关联性与动态演化性,导致特征挖掘难度大。目前单一维度分析方法难以全面捕捉时空数据的长短期变化特征,易使关键信息丢失。为此,提出一种基于LSTM-MSTCN-XGBoost混合模型的时空数据特征挖掘方法。用OWL对时空数据进行形式化建模,由LSTM与MSTCN模型分别挖掘长短期特征,输入XGBoost模型融合并输出特征模式识别结果。实验结果表明,所提方法提取的时空数据特征全局时空Moran′s I指数超过0.9,在交通时空数据挖掘中对拥堵特征的刻画也更贴合实际,可为时空数据挖掘及智能决策提供有效途径。
关键词
时空数据
特征挖掘
LSTM
模
型
MSTCN
模
型
XGBoost
模
型
owl形式化建模
Keywords
spatiotemporal data
feature mining
LSTM model
MSTCN model
XGBoost model
owl
formal modeling
分类号
TN911.7-34 [电子电信—通信与信息系统]
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
LSTM-MSTCN-XGBoost混合模型的时空数据特征挖掘
李阳政
易吉良
《现代电子技术》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部