Analyzes the mechanism of overvoltage when contactless tap changer switch which is applied in distributing transformer converted directly.When the device convert the tap off,it employs the way that the SSR is switche...Analyzes the mechanism of overvoltage when contactless tap changer switch which is applied in distributing transformer converted directly.When the device convert the tap off,it employs the way that the SSR is switched on when voltage through zero and switched off when current through zero.But in the experiment we found that overvoltage will occur in the process of changing tap changer.The paper illustrates the mechanism of overvoltage in theory by analyzing the equivalent circuit and using analytic method of transition process.展开更多
This paper analyzes lightning surge on the stator windings of wind turbine generators.The path of lightning in the wind turbines was analyzed.An equivalent circuit model for megawatt direct-driven wind turbine system ...This paper analyzes lightning surge on the stator windings of wind turbine generators.The path of lightning in the wind turbines was analyzed.An equivalent circuit model for megawatt direct-driven wind turbine system was developed,in which high-frequency distributed parameters of the blade conducts,tower,power cables and stator windings of generator were calculated based on finite element method,and the models of converter,grounding,loads, surge protection devices and power grid were established.The voltage distribution along stator windings,when struck by lightning with 10/350μs wave form and different amplitude current between 50 kA and 200 kA,was simulated using electro-magnetic transient analysis method.The simulated results show that the highest coil-to-core voltage peak appears on the last coil or near the neutral of stator windings,and the voltage distribution along the windings is nonuniform initially.The voltage drops of each coil fall from first to last coil,and the highest voltage drop appears on the first coil.The insulation damage may occur on the windings under lightning overvoltage.The surge arresters can restrain the lightning surge in effect and protect the insulation.The coil-to-core voltage in the end of windings is nearly 19.5 kV under the 200 kA lightning current without surge arresters on the terminal of generator,but is only 2.7 kV with arresters.展开更多
Rechargeable lithium-oxygen(Li-O_(2))batteries have attracted wide attention due to their high energy density.However,the sluggish cathode kinetics results in high overvoltage and poor cycling performance.Ruthenium(Ru...Rechargeable lithium-oxygen(Li-O_(2))batteries have attracted wide attention due to their high energy density.However,the sluggish cathode kinetics results in high overvoltage and poor cycling performance.Ruthenium(Ru)-based electrocatalysts have been demonstrated to be promising cathode catalysts to promote oxygen evolution reaction(OER).It facilitates decomposition of lithium peroxide(Li_(2)O_(2))by adjusting Li_(2)O_(2) morphologies,which is due to the strong interaction between Ru-based catalyst and superoxide anion(O_(2))intermediate.In this review,the design strategies of Ru-based electrocatalysts are introduced to enhance their OER catalytic kinetics in Li-O_(2) batteries.Different configurations of Ru-based catalysts,including metal particles(Ru metal and alloys),single-atom catalysts,and Ru-loaded compounds with various substrates(carbon materials,metal oxides/sulfides),have been summarized to regulate the electronic structure and the matrix architecture of the Ru-based electrocatalysts.The structure-property relationship of Ru-based catalysts is discussed for a better understanding of the Li_(2)O_(2) decomposition mechanism at the cathode interface.Finally,the challenges of Ru-based electrocatalysts are proposed for the future development of Li-O_(2) batteries.展开更多
基金Harbin science an technology officecontract num ber is 0 0 112 110 98
文摘Analyzes the mechanism of overvoltage when contactless tap changer switch which is applied in distributing transformer converted directly.When the device convert the tap off,it employs the way that the SSR is switched on when voltage through zero and switched off when current through zero.But in the experiment we found that overvoltage will occur in the process of changing tap changer.The paper illustrates the mechanism of overvoltage in theory by analyzing the equivalent circuit and using analytic method of transition process.
基金Supported by National Natural Science Foundation of China(50877063)
文摘This paper analyzes lightning surge on the stator windings of wind turbine generators.The path of lightning in the wind turbines was analyzed.An equivalent circuit model for megawatt direct-driven wind turbine system was developed,in which high-frequency distributed parameters of the blade conducts,tower,power cables and stator windings of generator were calculated based on finite element method,and the models of converter,grounding,loads, surge protection devices and power grid were established.The voltage distribution along stator windings,when struck by lightning with 10/350μs wave form and different amplitude current between 50 kA and 200 kA,was simulated using electro-magnetic transient analysis method.The simulated results show that the highest coil-to-core voltage peak appears on the last coil or near the neutral of stator windings,and the voltage distribution along the windings is nonuniform initially.The voltage drops of each coil fall from first to last coil,and the highest voltage drop appears on the first coil.The insulation damage may occur on the windings under lightning overvoltage.The surge arresters can restrain the lightning surge in effect and protect the insulation.The coil-to-core voltage in the end of windings is nearly 19.5 kV under the 200 kA lightning current without surge arresters on the terminal of generator,but is only 2.7 kV with arresters.
基金the National Natural Science Foundation of China(22325902 and 51671107)Haihe Laboratory of Sustainable Chemical Transformations.
文摘Rechargeable lithium-oxygen(Li-O_(2))batteries have attracted wide attention due to their high energy density.However,the sluggish cathode kinetics results in high overvoltage and poor cycling performance.Ruthenium(Ru)-based electrocatalysts have been demonstrated to be promising cathode catalysts to promote oxygen evolution reaction(OER).It facilitates decomposition of lithium peroxide(Li_(2)O_(2))by adjusting Li_(2)O_(2) morphologies,which is due to the strong interaction between Ru-based catalyst and superoxide anion(O_(2))intermediate.In this review,the design strategies of Ru-based electrocatalysts are introduced to enhance their OER catalytic kinetics in Li-O_(2) batteries.Different configurations of Ru-based catalysts,including metal particles(Ru metal and alloys),single-atom catalysts,and Ru-loaded compounds with various substrates(carbon materials,metal oxides/sulfides),have been summarized to regulate the electronic structure and the matrix architecture of the Ru-based electrocatalysts.The structure-property relationship of Ru-based catalysts is discussed for a better understanding of the Li_(2)O_(2) decomposition mechanism at the cathode interface.Finally,the challenges of Ru-based electrocatalysts are proposed for the future development of Li-O_(2) batteries.