针对传统特征匹配算法计算效率低、误匹配率高和双目视觉测量精度不足等问题,提出了一种基于自适应几何约束和随机抽样一致性方法的ORB(Oriented FAST and Rotated BRIEF)红外双目测距方法。首先,通过FAST(Features from Accelerated Se...针对传统特征匹配算法计算效率低、误匹配率高和双目视觉测量精度不足等问题,提出了一种基于自适应几何约束和随机抽样一致性方法的ORB(Oriented FAST and Rotated BRIEF)红外双目测距方法。首先,通过FAST(Features from Accelerated Segment Test)算法与BRIEF(Binary Robust Independent Elementary Features)算法检测并描述关键点,采用快速最近邻搜索的算法完成特征点初始匹配。然后,根据初始匹配点对的斜率与距离选择相应的阈值,构建基于斜率与距离的几何约束,剔除明显错误匹配点对。最后利用随机抽样一致性方法去除异常点完成精匹配,结合热像仪标定参数计算出目标物体的距离。实验结果表明,改进的ORB算法与传统算法相比,具有较好的特征点质量和较高的测量精度,测距平均绝对误差为1.64%,具有较好的实用价值。展开更多
原ORB(oriented FAST and rotated BRIEF)算法提取的图像特征点经常出现“扎堆重叠”现象,其分布较为密集且缺乏尺度不变性,因而容易造成图像特征点误匹配的问题。为了解决该问题,提出了一种基于四叉树划分的图像特征点提取算法。首先...原ORB(oriented FAST and rotated BRIEF)算法提取的图像特征点经常出现“扎堆重叠”现象,其分布较为密集且缺乏尺度不变性,因而容易造成图像特征点误匹配的问题。为了解决该问题,提出了一种基于四叉树划分的图像特征点提取算法。首先对图像建立尺度金字塔,然后使用四叉树划分图像并限制划分深度。用加速分段测试的特征(features from accelerated segment test,FAST)算法通过多个检测阈值对划分后的图像进行特征点检测。检测完毕后,根据划分出的子块总数和提取的特征点总数对划分出来的各个子块设置自适应阈值,提取ORB特征点。操作完成后通过采取非极大值抑制的方法筛选最佳特征点,并使用改良后的二元鲁棒独立基本特征(binary robust independent elementary features,BRIEF)算法计算得出特征点的描述符,最后进行特征点匹配。实验结果表明,本文算法提取的图像特征点较原ORB算法提取的效果在均匀程度上得到了明显地提升,冗余重叠的特征点数量减少,且在特征点提取速度方面较原ORB算法的提取速度提高了30%以上。展开更多
针对ORB(oriented FAST and rotated BRIEF)在匹配多相似区域图像时误匹配率高的问题,提出一种基于余弦相似度的改进ORB算法。该算法首先通过汉明距离(Hamming distance)最近邻匹配,计算匹配特征向量的余弦相似度;其次通过梯度计算法计...针对ORB(oriented FAST and rotated BRIEF)在匹配多相似区域图像时误匹配率高的问题,提出一种基于余弦相似度的改进ORB算法。该算法首先通过汉明距离(Hamming distance)最近邻匹配,计算匹配特征向量的余弦相似度;其次通过梯度计算法计算余弦相似度的最优阈值范围;然后将汉明距离高自由度最近次近邻粗匹配结果,利用余弦相似度不变性剔除不在最优阈值范围的匹配点;最后用RANSAC算法再次精确匹配。实验结果表明:该算法能在保证匹配特征点数以及实时性的基础上,高效降低误匹配率,尤其在匹配多相似区域图像时,可将原算法产生的误匹配率降低80%左右,同时该算法还超越了原算法在图像发生视角、旋转、尺度、模糊、光照变化时的适应性。展开更多
基于相机的无人驾驶汽车视觉同步定位与地图构建(SLAM),可完成无人驾驶汽车的定位与建图。针对传统ORB(Oriented FAST and Rotated BRIEF)算法在提取图像特征点时容易造成冗杂、分布集中的问题,提出一种限制四叉树算法分裂深度的改进ORB...基于相机的无人驾驶汽车视觉同步定位与地图构建(SLAM),可完成无人驾驶汽车的定位与建图。针对传统ORB(Oriented FAST and Rotated BRIEF)算法在提取图像特征点时容易造成冗杂、分布集中的问题,提出一种限制四叉树算法分裂深度的改进ORB(A-ORB)算法。该算法构造图像金字塔解决尺度不变性问题;根据所提取的特征点总数计算出每层金字塔所需要提取的特征点数;对每层金字塔图像采用自适应区域划分,根据图像信息计算特征点提取阈值;利用改进四叉树算法来均匀化分布特征点。进行了模拟实验。结果表明:相较于ORB、MA以及S-ORB算法,该算法运行效率提高了30%以上,匹配精度提高了10%以上。展开更多
针对混合现实技术在识别标志物时易发生抖动,且识别过程易受到遮挡影响的问题,从标志物特征点提取与匹配的角度入手,改进混合现实技术对标志物的识别算法。通过构造尺度空间,结合加速稳健特征(speeded up robust features,SURF)算法提...针对混合现实技术在识别标志物时易发生抖动,且识别过程易受到遮挡影响的问题,从标志物特征点提取与匹配的角度入手,改进混合现实技术对标志物的识别算法。通过构造尺度空间,结合加速稳健特征(speeded up robust features,SURF)算法提取特征点,对ORB(oriented FAST and rotated BRIEF)算法的特征点提取和匹配进行改进。改进后的算法在特征点匹配的过程中精度更高,比SURF算法提升了38.8%,比ORB算法提升了28.3%,有效地提高了目标识别的效率。结果表明:把改进后的算法运用在混合现实系统中,可以在标志物被遮挡50%时,成功把虚拟模型叠加在标志物上,解决了模型抖动的问题。展开更多
针对ORB(Oriented FAST and Rotated BRIEF)特征匹配算法在复杂环境变化下匹配精确率低以及匹配速度过慢的问题,提出了一种基于四叉树分解法和RANSAC(随机抽样一致性)方法的改进ORB算法。首先对待处理的原始图像经过四叉树分解法来剔除...针对ORB(Oriented FAST and Rotated BRIEF)特征匹配算法在复杂环境变化下匹配精确率低以及匹配速度过慢的问题,提出了一种基于四叉树分解法和RANSAC(随机抽样一致性)方法的改进ORB算法。首先对待处理的原始图像经过四叉树分解法来剔除掉灰度变化不明显的区域,然后再进行FAST特征点检测,在特征点匹配环节通过改进的RANSAC方法消除掉错误匹配。实验结果表明,改进后的ORB算法有效匹配精度提升23.5%,时间缩短了18.4%,在环境复杂变化时具有良好的鲁棒性与实时性。展开更多
针对视觉SLAM(Simultaneous Localization and Mapping)在真实场景下出现动态物体(如行人,车辆、动物)等影响算法定位和建图精确性的问题,基于ORB-SLAM3(Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping 3)提出...针对视觉SLAM(Simultaneous Localization and Mapping)在真实场景下出现动态物体(如行人,车辆、动物)等影响算法定位和建图精确性的问题,基于ORB-SLAM3(Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping 3)提出了YOLOv3-ORB-SLAM3算法。该算法在ORB-SLAM3的基础上增加了语义线程,采用动态和静态场景特征提取双线程机制:语义线程使用YOLOv3对场景中动态物体进行语义识别目标检测,同时对提取的动态区域特征点进行离群点剔除;跟踪线程通过ORB特征提取场景区域特征,结合语义信息获得静态场景特征送入后端,从而消除动态场景对系统的干扰,提升视觉SLAM算法定位精度。利用TUM(Technical University of Munich)数据集验证,结果表明YOLOv3-ORB-SLAM3算法在单目模式下动态序列相比ORB-SLAM3算法ATE(Average Treatment Effect)指标下降30%左右,RGB-D(Red,Green and Blue-Depth)模式下动态序列ATE指标下降10%,静态序列未有明显下降。展开更多
为降低视觉设备感知航行环境时,水面光照反射对船舶位姿估计和环境地图重构的影响,在HSV(hue,saturation,value)颜色空间下,采用K均值聚类算法对近岸航行环境图像进行聚类分割处理。改进快速特征点提取和描述算法(oriented FAST and rot...为降低视觉设备感知航行环境时,水面光照反射对船舶位姿估计和环境地图重构的影响,在HSV(hue,saturation,value)颜色空间下,采用K均值聚类算法对近岸航行环境图像进行聚类分割处理。改进快速特征点提取和描述算法(oriented FAST and rotated BRIEF,ORB)来提高即时定位与地图构建(simultaneous localization and mapping,SLAM)效率,缩短特征点匹配时间,改善对外界环境的感知效果并提升船舶自身位姿估计精度。采用2020年南宁海事局执法船进港和靠泊期间由单目相机拍摄的视频数据进行实例验证。结果表明,提出的算法比传统SLAM算法的运行耗时更少,与传统定位设备输出轨迹的偏差较小,可为船舶全面立体感知海上航行环境提供研究基础。展开更多
文摘针对传统特征匹配算法计算效率低、误匹配率高和双目视觉测量精度不足等问题,提出了一种基于自适应几何约束和随机抽样一致性方法的ORB(Oriented FAST and Rotated BRIEF)红外双目测距方法。首先,通过FAST(Features from Accelerated Segment Test)算法与BRIEF(Binary Robust Independent Elementary Features)算法检测并描述关键点,采用快速最近邻搜索的算法完成特征点初始匹配。然后,根据初始匹配点对的斜率与距离选择相应的阈值,构建基于斜率与距离的几何约束,剔除明显错误匹配点对。最后利用随机抽样一致性方法去除异常点完成精匹配,结合热像仪标定参数计算出目标物体的距离。实验结果表明,改进的ORB算法与传统算法相比,具有较好的特征点质量和较高的测量精度,测距平均绝对误差为1.64%,具有较好的实用价值。
文摘原ORB(oriented FAST and rotated BRIEF)算法提取的图像特征点经常出现“扎堆重叠”现象,其分布较为密集且缺乏尺度不变性,因而容易造成图像特征点误匹配的问题。为了解决该问题,提出了一种基于四叉树划分的图像特征点提取算法。首先对图像建立尺度金字塔,然后使用四叉树划分图像并限制划分深度。用加速分段测试的特征(features from accelerated segment test,FAST)算法通过多个检测阈值对划分后的图像进行特征点检测。检测完毕后,根据划分出的子块总数和提取的特征点总数对划分出来的各个子块设置自适应阈值,提取ORB特征点。操作完成后通过采取非极大值抑制的方法筛选最佳特征点,并使用改良后的二元鲁棒独立基本特征(binary robust independent elementary features,BRIEF)算法计算得出特征点的描述符,最后进行特征点匹配。实验结果表明,本文算法提取的图像特征点较原ORB算法提取的效果在均匀程度上得到了明显地提升,冗余重叠的特征点数量减少,且在特征点提取速度方面较原ORB算法的提取速度提高了30%以上。
文摘针对ORB(oriented FAST and rotated BRIEF)在匹配多相似区域图像时误匹配率高的问题,提出一种基于余弦相似度的改进ORB算法。该算法首先通过汉明距离(Hamming distance)最近邻匹配,计算匹配特征向量的余弦相似度;其次通过梯度计算法计算余弦相似度的最优阈值范围;然后将汉明距离高自由度最近次近邻粗匹配结果,利用余弦相似度不变性剔除不在最优阈值范围的匹配点;最后用RANSAC算法再次精确匹配。实验结果表明:该算法能在保证匹配特征点数以及实时性的基础上,高效降低误匹配率,尤其在匹配多相似区域图像时,可将原算法产生的误匹配率降低80%左右,同时该算法还超越了原算法在图像发生视角、旋转、尺度、模糊、光照变化时的适应性。
文摘基于相机的无人驾驶汽车视觉同步定位与地图构建(SLAM),可完成无人驾驶汽车的定位与建图。针对传统ORB(Oriented FAST and Rotated BRIEF)算法在提取图像特征点时容易造成冗杂、分布集中的问题,提出一种限制四叉树算法分裂深度的改进ORB(A-ORB)算法。该算法构造图像金字塔解决尺度不变性问题;根据所提取的特征点总数计算出每层金字塔所需要提取的特征点数;对每层金字塔图像采用自适应区域划分,根据图像信息计算特征点提取阈值;利用改进四叉树算法来均匀化分布特征点。进行了模拟实验。结果表明:相较于ORB、MA以及S-ORB算法,该算法运行效率提高了30%以上,匹配精度提高了10%以上。
文摘针对混合现实技术在识别标志物时易发生抖动,且识别过程易受到遮挡影响的问题,从标志物特征点提取与匹配的角度入手,改进混合现实技术对标志物的识别算法。通过构造尺度空间,结合加速稳健特征(speeded up robust features,SURF)算法提取特征点,对ORB(oriented FAST and rotated BRIEF)算法的特征点提取和匹配进行改进。改进后的算法在特征点匹配的过程中精度更高,比SURF算法提升了38.8%,比ORB算法提升了28.3%,有效地提高了目标识别的效率。结果表明:把改进后的算法运用在混合现实系统中,可以在标志物被遮挡50%时,成功把虚拟模型叠加在标志物上,解决了模型抖动的问题。
文摘针对ORB(Oriented FAST and Rotated BRIEF)特征匹配算法在复杂环境变化下匹配精确率低以及匹配速度过慢的问题,提出了一种基于四叉树分解法和RANSAC(随机抽样一致性)方法的改进ORB算法。首先对待处理的原始图像经过四叉树分解法来剔除掉灰度变化不明显的区域,然后再进行FAST特征点检测,在特征点匹配环节通过改进的RANSAC方法消除掉错误匹配。实验结果表明,改进后的ORB算法有效匹配精度提升23.5%,时间缩短了18.4%,在环境复杂变化时具有良好的鲁棒性与实时性。
文摘针对视觉SLAM(Simultaneous Localization and Mapping)在真实场景下出现动态物体(如行人,车辆、动物)等影响算法定位和建图精确性的问题,基于ORB-SLAM3(Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping 3)提出了YOLOv3-ORB-SLAM3算法。该算法在ORB-SLAM3的基础上增加了语义线程,采用动态和静态场景特征提取双线程机制:语义线程使用YOLOv3对场景中动态物体进行语义识别目标检测,同时对提取的动态区域特征点进行离群点剔除;跟踪线程通过ORB特征提取场景区域特征,结合语义信息获得静态场景特征送入后端,从而消除动态场景对系统的干扰,提升视觉SLAM算法定位精度。利用TUM(Technical University of Munich)数据集验证,结果表明YOLOv3-ORB-SLAM3算法在单目模式下动态序列相比ORB-SLAM3算法ATE(Average Treatment Effect)指标下降30%左右,RGB-D(Red,Green and Blue-Depth)模式下动态序列ATE指标下降10%,静态序列未有明显下降。
文摘为降低视觉设备感知航行环境时,水面光照反射对船舶位姿估计和环境地图重构的影响,在HSV(hue,saturation,value)颜色空间下,采用K均值聚类算法对近岸航行环境图像进行聚类分割处理。改进快速特征点提取和描述算法(oriented FAST and rotated BRIEF,ORB)来提高即时定位与地图构建(simultaneous localization and mapping,SLAM)效率,缩短特征点匹配时间,改善对外界环境的感知效果并提升船舶自身位姿估计精度。采用2020年南宁海事局执法船进港和靠泊期间由单目相机拍摄的视频数据进行实例验证。结果表明,提出的算法比传统SLAM算法的运行耗时更少,与传统定位设备输出轨迹的偏差较小,可为船舶全面立体感知海上航行环境提供研究基础。