针对ORB(oriented FAST and rotated BRIEF)算法中存在匹配精确率低的问题,提出了一种基于LK(Lucas-Kanade)光流改进的ORB图像匹配方法。首先对待处理的图像进行直方图均衡化,然后在Oriented FAST特征点检测的同时用LK光流对其进行跟踪...针对ORB(oriented FAST and rotated BRIEF)算法中存在匹配精确率低的问题,提出了一种基于LK(Lucas-Kanade)光流改进的ORB图像匹配方法。首先对待处理的图像进行直方图均衡化,然后在Oriented FAST特征点检测的同时用LK光流对其进行跟踪,并将跟踪的特征点进行Rotated BRIEF描述,最后在特征匹配筛选环节利用RANSAC(Random Sampling Consistency)算法进行误匹配的剔除。实验结果表明,改进算法在公开数据集中的平均匹配精度为90.9%,平均特征匹配及误匹配的剔除共耗时为18ms,与原始ORB算法相比,在时间基本一致的前提下,有效的提高了匹配的精度。展开更多
在动态场景运动目标检测下提出了一种新颖的快速目标检测算法,针对SURF算法不能满足实时性的需要,提出基于ORB(oriented FAST and rotated BRIEF)特征的特征点匹配算法,接着采用八参数旋转模型,结合最小二乘法求解全局运动参数进行运动...在动态场景运动目标检测下提出了一种新颖的快速目标检测算法,针对SURF算法不能满足实时性的需要,提出基于ORB(oriented FAST and rotated BRIEF)特征的特征点匹配算法,接着采用八参数旋转模型,结合最小二乘法求解全局运动参数进行运动补偿,最后使用帧差法来获得运动目标。在此过程中采用PROSAC(progressive sample consensus)算法来去除外点。实验结果表明,该算法不仅保持了SURF本身的优越性,而且提高了检测速度,可以实时准确的检测出运动目标。展开更多
原ORB(oriented FAST and rotated BRIEF)算法提取的图像特征点经常出现“扎堆重叠”现象,其分布较为密集且缺乏尺度不变性,因而容易造成图像特征点误匹配的问题。为了解决该问题,提出了一种基于四叉树划分的图像特征点提取算法。首先...原ORB(oriented FAST and rotated BRIEF)算法提取的图像特征点经常出现“扎堆重叠”现象,其分布较为密集且缺乏尺度不变性,因而容易造成图像特征点误匹配的问题。为了解决该问题,提出了一种基于四叉树划分的图像特征点提取算法。首先对图像建立尺度金字塔,然后使用四叉树划分图像并限制划分深度。用加速分段测试的特征(features from accelerated segment test,FAST)算法通过多个检测阈值对划分后的图像进行特征点检测。检测完毕后,根据划分出的子块总数和提取的特征点总数对划分出来的各个子块设置自适应阈值,提取ORB特征点。操作完成后通过采取非极大值抑制的方法筛选最佳特征点,并使用改良后的二元鲁棒独立基本特征(binary robust independent elementary features,BRIEF)算法计算得出特征点的描述符,最后进行特征点匹配。实验结果表明,本文算法提取的图像特征点较原ORB算法提取的效果在均匀程度上得到了明显地提升,冗余重叠的特征点数量减少,且在特征点提取速度方面较原ORB算法的提取速度提高了30%以上。展开更多
鉴于ORB算法在特征点匹配时基本不具备尺度不变性,结合SIFT算法思想,提出了改进的ORB算法:SIRB(ORB and SIFT)。首先生成图像的多尺度空间,并在多尺度空间里检测稳定的极值点,使得提取出的特征点具有尺度不变信息;然后使用ORB描述子对...鉴于ORB算法在特征点匹配时基本不具备尺度不变性,结合SIFT算法思想,提出了改进的ORB算法:SIRB(ORB and SIFT)。首先生成图像的多尺度空间,并在多尺度空间里检测稳定的极值点,使得提取出的特征点具有尺度不变信息;然后使用ORB描述子对特征点进行描述,生成旋转不变性的二进制描述子;最后通过Hamming距离完成对特征点的匹配。实验结果表明,SIRB有效地解决了ORB不具备尺度不变性的缺陷,在图像尺度发生变化时,SIRB算法特征点匹配的平均准确度达到约93.3%,相比于ORB提高了约70.7%;同时SIRB和ORB两种算法的匹配速度大致相当,SIRB保留了原ORB算法的快速优越性,平均匹配速度比SIFT快约63.2倍;将提出的SIRB算法应用到视频目标跟踪系统中,取得了良好的实验效果,具有一定的应用价值。展开更多
在视觉同时定位与地图构建问题中,ORB(Oriented FAST and Rotated BRIEF)特征由于其高效、稳定的优点而受到广泛关注。针对ORB特征提取过程中存在的像点量测精度较低、特征聚集现象明显等问题,提出了一种适用于高精度SLAM的均衡化亚像素...在视觉同时定位与地图构建问题中,ORB(Oriented FAST and Rotated BRIEF)特征由于其高效、稳定的优点而受到广泛关注。针对ORB特征提取过程中存在的像点量测精度较低、特征聚集现象明显等问题,提出了一种适用于高精度SLAM的均衡化亚像素ORB特征提取方法。分析了精确特征定位的原理,对误差方程进行合理的简化并采用一种基于模板窗口距离的权函数计算方法,大幅降低了计算负担;设计了一种基于四叉树结构的特征均衡化方案,对包含特征的像平面空间进行有限次数的迭代分割,然后选取具有最优响应的特征。试验表明,本文方法进行特征提取的额外计算负担小于2.5 ms,在运行TUM和KITTI数据集时,ORB特征的量测精度分别为0.84和0.62 Pixel,达到亚像素水平,可以降低误差初值,提高光束法平差效率,并能够在满足特征总体分布规律的情况下,显著改善特征聚集的现象,有利于后续问题的稳健、准确求解。展开更多
文摘针对ORB(oriented FAST and rotated BRIEF)算法中存在匹配精确率低的问题,提出了一种基于LK(Lucas-Kanade)光流改进的ORB图像匹配方法。首先对待处理的图像进行直方图均衡化,然后在Oriented FAST特征点检测的同时用LK光流对其进行跟踪,并将跟踪的特征点进行Rotated BRIEF描述,最后在特征匹配筛选环节利用RANSAC(Random Sampling Consistency)算法进行误匹配的剔除。实验结果表明,改进算法在公开数据集中的平均匹配精度为90.9%,平均特征匹配及误匹配的剔除共耗时为18ms,与原始ORB算法相比,在时间基本一致的前提下,有效的提高了匹配的精度。
文摘在动态场景运动目标检测下提出了一种新颖的快速目标检测算法,针对SURF算法不能满足实时性的需要,提出基于ORB(oriented FAST and rotated BRIEF)特征的特征点匹配算法,接着采用八参数旋转模型,结合最小二乘法求解全局运动参数进行运动补偿,最后使用帧差法来获得运动目标。在此过程中采用PROSAC(progressive sample consensus)算法来去除外点。实验结果表明,该算法不仅保持了SURF本身的优越性,而且提高了检测速度,可以实时准确的检测出运动目标。
文摘原ORB(oriented FAST and rotated BRIEF)算法提取的图像特征点经常出现“扎堆重叠”现象,其分布较为密集且缺乏尺度不变性,因而容易造成图像特征点误匹配的问题。为了解决该问题,提出了一种基于四叉树划分的图像特征点提取算法。首先对图像建立尺度金字塔,然后使用四叉树划分图像并限制划分深度。用加速分段测试的特征(features from accelerated segment test,FAST)算法通过多个检测阈值对划分后的图像进行特征点检测。检测完毕后,根据划分出的子块总数和提取的特征点总数对划分出来的各个子块设置自适应阈值,提取ORB特征点。操作完成后通过采取非极大值抑制的方法筛选最佳特征点,并使用改良后的二元鲁棒独立基本特征(binary robust independent elementary features,BRIEF)算法计算得出特征点的描述符,最后进行特征点匹配。实验结果表明,本文算法提取的图像特征点较原ORB算法提取的效果在均匀程度上得到了明显地提升,冗余重叠的特征点数量减少,且在特征点提取速度方面较原ORB算法的提取速度提高了30%以上。
文摘鉴于ORB算法在特征点匹配时基本不具备尺度不变性,结合SIFT算法思想,提出了改进的ORB算法:SIRB(ORB and SIFT)。首先生成图像的多尺度空间,并在多尺度空间里检测稳定的极值点,使得提取出的特征点具有尺度不变信息;然后使用ORB描述子对特征点进行描述,生成旋转不变性的二进制描述子;最后通过Hamming距离完成对特征点的匹配。实验结果表明,SIRB有效地解决了ORB不具备尺度不变性的缺陷,在图像尺度发生变化时,SIRB算法特征点匹配的平均准确度达到约93.3%,相比于ORB提高了约70.7%;同时SIRB和ORB两种算法的匹配速度大致相当,SIRB保留了原ORB算法的快速优越性,平均匹配速度比SIFT快约63.2倍;将提出的SIRB算法应用到视频目标跟踪系统中,取得了良好的实验效果,具有一定的应用价值。
文摘在视觉同时定位与地图构建问题中,ORB(Oriented FAST and Rotated BRIEF)特征由于其高效、稳定的优点而受到广泛关注。针对ORB特征提取过程中存在的像点量测精度较低、特征聚集现象明显等问题,提出了一种适用于高精度SLAM的均衡化亚像素ORB特征提取方法。分析了精确特征定位的原理,对误差方程进行合理的简化并采用一种基于模板窗口距离的权函数计算方法,大幅降低了计算负担;设计了一种基于四叉树结构的特征均衡化方案,对包含特征的像平面空间进行有限次数的迭代分割,然后选取具有最优响应的特征。试验表明,本文方法进行特征提取的额外计算负担小于2.5 ms,在运行TUM和KITTI数据集时,ORB特征的量测精度分别为0.84和0.62 Pixel,达到亚像素水平,可以降低误差初值,提高光束法平差效率,并能够在满足特征总体分布规律的情况下,显著改善特征聚集的现象,有利于后续问题的稳健、准确求解。