In order to understand how chitosan affects disease resistance and quality of navel orange fruit(Citrussinensis L.osbeck)cv.Newhall after harvest,navel orange fruits were treated with 2 g chitosan/100 g solution for 1...In order to understand how chitosan affects disease resistance and quality of navel orange fruit(Citrussinensis L.osbeck)cv.Newhall after harvest,navel orange fruits were treated with 2 g chitosan/100 g solution for 1 min,and some fruits were taken out,dried naturally and inoculated with Penicillium italicum.Then,the fruits were stored at 20℃and 85%to 95%RH.Results indicated that the disease incidence and the lesion diameter in the chitosan-treated fruit are 72.72%and 90.19%,lower than those in control fruit on the 18^th day of incubation.The chitosan treatment maintains the soluble protein content,total phenolic and flavonoid level of navel orange fruit,which maybe involve in the maintenance of disease resistance of navel orange fruit.Treating navel orange fruit with 2 g chitosan/100 g solution effectively reduces the decrease in the content ofascorbic acid(AsA),water,titratable acidity(TA)and total soluble solids(TSS).These results suggested that the treatment with chitosan coating enhances the disease resistance and exhibits a potential for storage life extension of the navel orange fruit stored at ambient temperature.展开更多
In this study,the electrochemical oxidation of reactive brilliant orange X-GN dye with a boron-doped diamond(BDD)anode was investigated.The BDD electrodes were deposited on the niobium(Nb)substrates by the hot filamen...In this study,the electrochemical oxidation of reactive brilliant orange X-GN dye with a boron-doped diamond(BDD)anode was investigated.The BDD electrodes were deposited on the niobium(Nb)substrates by the hot filament chemical vapor deposition method.The effects of processing parameters,such as film thickness,current density,supporting electrolyte concentration,initial solution pH,solution temperature,and initial dye concentration,were evaluated following the variation in the degradation efficiency.The microstructure and the electrochemical property of BDD were characterized by scanning electron microscopy,Raman spectroscopy,and electrochemical workstation;and the degradation of X-GN was estimated using UV-Vis spectrophotometry.Further,the results indicated that the film thickness of BDD had a significant impact on the electrolysis of X-GN.After 3 h of treatment,100%color and 63.2%total organic carbon removal was achieved under optimized experimental conditions:current density of 100 mA/cm2,supporting electrolyte concentration of 0.05 mol/L,initial solution pH 3.08,and solution temperature of 60°C.展开更多
In a famous paper published in 1982, a very special class of gunshot residue particles(GSR) was named by Samarendra Basu "peeled orange", due to their particular structure, consisting of a barium/antimony co...In a famous paper published in 1982, a very special class of gunshot residue particles(GSR) was named by Samarendra Basu "peeled orange", due to their particular structure, consisting of a barium/antimony core covered by an outer lead leaflet. In this class of GSR particles the surface may show nodular structures of lead. Basu proposed an explanation in terms of a nucleus of antimony and barium that captures lead vapours produced after the explosion of a cartridge into a firearm: as solidification points of antimony and barium are close one another, both higher than solidification point of lead, he stated that lead occurs as a layer around the core in peeled orange GSR particles. In this paper we study the thermodynamic of the barium/antimony alloy and we hypothesize a formation process in terms of colloidal metal growth, charged particles and electrostatic attraction. We propose an updated model of formation for peeled orange GSR particles that explains the existence of outer lead leaflet and nodules in terms of electrostatic attraction of lead nanoparticles and instability of lead droplets.展开更多
Activated carbon/nanosized CdS/chitosan(AC/n-CdS/CS) composites as adsorbent and photoactive catalyst were prepared under low temperature(≤60 ℃) and ambient pressure.Methyl orange(MO) was chosen as a model pollutant...Activated carbon/nanosized CdS/chitosan(AC/n-CdS/CS) composites as adsorbent and photoactive catalyst were prepared under low temperature(≤60 ℃) and ambient pressure.Methyl orange(MO) was chosen as a model pollutant to evaluate synergistic effect of adsorption and photocatalytic decolorization by this innovative photocatalyst under visible light irradiation.Effects of various parameters such as catalyst amount,initial MO concentration,solution pH and reuse of catalyst on the decolorization of MO were investigated to optimize operational conditions.The decolorization of MO catalyzed by AC/n-CdS/CS fits the Langmuir-Hinshelwood kinetics model,and a surface reaction,where the dyes are absorbed,is the controlling step of the process.Decolorization efficiency of MO is improved with the increase in catalyst amount within a certain range.The photodecolorization of MO is more efficient in acidic media than alkaline media.The decolorization efficiency of MO is still higher than 84% after five cycles and 60 min under visible light irradiation,which confirms the reusability of AC/n-CdS/CS composite catalyst.展开更多
The viscous-flow properties of pectin from the residue of orange peel after extraction of essential oil and flavonoid were studied and the viscosity-average molecular mass(Mv,ave) of this kind of pectin was determined...The viscous-flow properties of pectin from the residue of orange peel after extraction of essential oil and flavonoid were studied and the viscosity-average molecular mass(Mv,ave) of this kind of pectin was determined.Experimental results show that Arrhenius viscous-flow equation can be applied to describing the effect of temperature on viscosity of this kind of orange peel pectin solutions with the average viscous-flow activation energy being 17.91 kJ/mol(depending on the concentration).Neither power equation,η =K1 cA1,nor exponential equation,η=K2exp(A2c) can describe the effect of concentration on viscosity of this kind of orange peel pectin solutions well.However,it seems that exponential equation model is more suitable to describe their relation due to its higher linear correlation coefficient.Schulz-Blaschke equation can be used to calculate the intrinsic viscosity of this kind of orange peel pectin.The Mv,ave of the orange peel pectin is 1.65×105 g/mol.展开更多
A batch experiment was conducted to investigate the adsorption of an acid dye(Acid Orange 51) and a basic dye(Safranine) from aqueous solutions by the sludge-based activated carbon(SBAC). The results show that the ads...A batch experiment was conducted to investigate the adsorption of an acid dye(Acid Orange 51) and a basic dye(Safranine) from aqueous solutions by the sludge-based activated carbon(SBAC). The results show that the adsorption of Acid Orange 51 decreases at high p H values, whereas the uptake of Safranine is higher in neutral and alkaline solutions than that in acidic conditions. The adsorption time needed for Safranine to reach equilibrium is shorter than that for Acid Orange 51. The uptakes of the dyes both increase with temperature increasing, indicating that the adsorption process of the dyes onto SBAC is endothermic. The equilibrium data of the dyes are both best represented by the Redlich-Peterson model. At 25 °C, the maximum adsorption capacities of SBAC for Acid Orange 51 and Safranine are 248.70 mg/g and 525.84 mg/g, respectively. The Elovich model is found to best describe the adsorption process of both dyes, indicating that the rate-limiting step involves the chemisorption. It can be concluded that SBAC is a promising material for the removal of Acid Orange 51 and Safranine from aqueous solutions.展开更多
Balanophora indica(Arn.)Griff.belongs to Balanophoraceae.Plants dioecious.Rhizome yellowish orange to brown,surface coarsely tessellated and with stellate warts;branches subglobose,0.5-5.6 cm in diam,rarely cylindric....Balanophora indica(Arn.)Griff.belongs to Balanophoraceae.Plants dioecious.Rhizome yellowish orange to brown,surface coarsely tessellated and with stellate warts;branches subglobose,0.5-5.6 cm in diam,rarely cylindric.Scapes yellow,7.2-20 cm.Male inflorescences red,ovoid-ellipsoid,(5-10)cm×(2-6)cm.Male flowers:reddish,actinomorphic,each subtended by a single stout and truncate bract.Perianth lobes 4-6,elliptic-lanceolate,(3-7)mm×(1-2.5)mm.Synandria elliptic-ovate,2.5-5 mm,stalked;anthers 4 or 5,U-shaped,longitudinally dehiscent.Female inflorescences globose,3-5 cm in diam.Spadicles subclavate,to 2 mm,apical 1/2 to 2/3 ellipsoid-obovoid;cuticular ridges of apical cells short but distinct and congested all over.Female flowers:basally on spadicles and main axis of inflorescence.Flowering October to December.展开更多
文摘In order to understand how chitosan affects disease resistance and quality of navel orange fruit(Citrussinensis L.osbeck)cv.Newhall after harvest,navel orange fruits were treated with 2 g chitosan/100 g solution for 1 min,and some fruits were taken out,dried naturally and inoculated with Penicillium italicum.Then,the fruits were stored at 20℃and 85%to 95%RH.Results indicated that the disease incidence and the lesion diameter in the chitosan-treated fruit are 72.72%and 90.19%,lower than those in control fruit on the 18^th day of incubation.The chitosan treatment maintains the soluble protein content,total phenolic and flavonoid level of navel orange fruit,which maybe involve in the maintenance of disease resistance of navel orange fruit.Treating navel orange fruit with 2 g chitosan/100 g solution effectively reduces the decrease in the content ofascorbic acid(AsA),water,titratable acidity(TA)and total soluble solids(TSS).These results suggested that the treatment with chitosan coating enhances the disease resistance and exhibits a potential for storage life extension of the navel orange fruit stored at ambient temperature.
基金Project(2016YEB0301402) supported by the National Key Research and Development Program of ChinaProject(51601226) supported by the National Natural Science Foundation of China+1 种基金Project supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,ChinaProject supported by State Key Laboratory of Powder Metallurgy,China
文摘In this study,the electrochemical oxidation of reactive brilliant orange X-GN dye with a boron-doped diamond(BDD)anode was investigated.The BDD electrodes were deposited on the niobium(Nb)substrates by the hot filament chemical vapor deposition method.The effects of processing parameters,such as film thickness,current density,supporting electrolyte concentration,initial solution pH,solution temperature,and initial dye concentration,were evaluated following the variation in the degradation efficiency.The microstructure and the electrochemical property of BDD were characterized by scanning electron microscopy,Raman spectroscopy,and electrochemical workstation;and the degradation of X-GN was estimated using UV-Vis spectrophotometry.Further,the results indicated that the film thickness of BDD had a significant impact on the electrolysis of X-GN.After 3 h of treatment,100%color and 63.2%total organic carbon removal was achieved under optimized experimental conditions:current density of 100 mA/cm2,supporting electrolyte concentration of 0.05 mol/L,initial solution pH 3.08,and solution temperature of 60°C.
文摘In a famous paper published in 1982, a very special class of gunshot residue particles(GSR) was named by Samarendra Basu "peeled orange", due to their particular structure, consisting of a barium/antimony core covered by an outer lead leaflet. In this class of GSR particles the surface may show nodular structures of lead. Basu proposed an explanation in terms of a nucleus of antimony and barium that captures lead vapours produced after the explosion of a cartridge into a firearm: as solidification points of antimony and barium are close one another, both higher than solidification point of lead, he stated that lead occurs as a layer around the core in peeled orange GSR particles. In this paper we study the thermodynamic of the barium/antimony alloy and we hypothesize a formation process in terms of colloidal metal growth, charged particles and electrostatic attraction. We propose an updated model of formation for peeled orange GSR particles that explains the existence of outer lead leaflet and nodules in terms of electrostatic attraction of lead nanoparticles and instability of lead droplets.
基金Project(21007044) supported by the National Natural Science Foundation of ChinaProject(20050532009) supported by the Doctoral Foundation of Ministry of Education of China
文摘Activated carbon/nanosized CdS/chitosan(AC/n-CdS/CS) composites as adsorbent and photoactive catalyst were prepared under low temperature(≤60 ℃) and ambient pressure.Methyl orange(MO) was chosen as a model pollutant to evaluate synergistic effect of adsorption and photocatalytic decolorization by this innovative photocatalyst under visible light irradiation.Effects of various parameters such as catalyst amount,initial MO concentration,solution pH and reuse of catalyst on the decolorization of MO were investigated to optimize operational conditions.The decolorization of MO catalyzed by AC/n-CdS/CS fits the Langmuir-Hinshelwood kinetics model,and a surface reaction,where the dyes are absorbed,is the controlling step of the process.Decolorization efficiency of MO is improved with the increase in catalyst amount within a certain range.The photodecolorization of MO is more efficient in acidic media than alkaline media.The decolorization efficiency of MO is still higher than 84% after five cycles and 60 min under visible light irradiation,which confirms the reusability of AC/n-CdS/CS composite catalyst.
基金Project(104-0071) supported by Foundation of Talents of Central South University of Forestry and Technology,China
文摘The viscous-flow properties of pectin from the residue of orange peel after extraction of essential oil and flavonoid were studied and the viscosity-average molecular mass(Mv,ave) of this kind of pectin was determined.Experimental results show that Arrhenius viscous-flow equation can be applied to describing the effect of temperature on viscosity of this kind of orange peel pectin solutions with the average viscous-flow activation energy being 17.91 kJ/mol(depending on the concentration).Neither power equation,η =K1 cA1,nor exponential equation,η=K2exp(A2c) can describe the effect of concentration on viscosity of this kind of orange peel pectin solutions well.However,it seems that exponential equation model is more suitable to describe their relation due to its higher linear correlation coefficient.Schulz-Blaschke equation can be used to calculate the intrinsic viscosity of this kind of orange peel pectin.The Mv,ave of the orange peel pectin is 1.65×105 g/mol.
基金Project(51008106)supported by the National Natural Science Foundation of China
文摘A batch experiment was conducted to investigate the adsorption of an acid dye(Acid Orange 51) and a basic dye(Safranine) from aqueous solutions by the sludge-based activated carbon(SBAC). The results show that the adsorption of Acid Orange 51 decreases at high p H values, whereas the uptake of Safranine is higher in neutral and alkaline solutions than that in acidic conditions. The adsorption time needed for Safranine to reach equilibrium is shorter than that for Acid Orange 51. The uptakes of the dyes both increase with temperature increasing, indicating that the adsorption process of the dyes onto SBAC is endothermic. The equilibrium data of the dyes are both best represented by the Redlich-Peterson model. At 25 °C, the maximum adsorption capacities of SBAC for Acid Orange 51 and Safranine are 248.70 mg/g and 525.84 mg/g, respectively. The Elovich model is found to best describe the adsorption process of both dyes, indicating that the rate-limiting step involves the chemisorption. It can be concluded that SBAC is a promising material for the removal of Acid Orange 51 and Safranine from aqueous solutions.
文摘Balanophora indica(Arn.)Griff.belongs to Balanophoraceae.Plants dioecious.Rhizome yellowish orange to brown,surface coarsely tessellated and with stellate warts;branches subglobose,0.5-5.6 cm in diam,rarely cylindric.Scapes yellow,7.2-20 cm.Male inflorescences red,ovoid-ellipsoid,(5-10)cm×(2-6)cm.Male flowers:reddish,actinomorphic,each subtended by a single stout and truncate bract.Perianth lobes 4-6,elliptic-lanceolate,(3-7)mm×(1-2.5)mm.Synandria elliptic-ovate,2.5-5 mm,stalked;anthers 4 or 5,U-shaped,longitudinally dehiscent.Female inflorescences globose,3-5 cm in diam.Spadicles subclavate,to 2 mm,apical 1/2 to 2/3 ellipsoid-obovoid;cuticular ridges of apical cells short but distinct and congested all over.Female flowers:basally on spadicles and main axis of inflorescence.Flowering October to December.