The structure and catalytic properties of SrTi0.9M0.1O3- δ (M=Mg,Al, Zr) perovskite type catalysts for oxidative coupling of methane (OCM) have been studied by using X ray diffraction (XRD),X ray photoelectron spectr...The structure and catalytic properties of SrTi0.9M0.1O3- δ (M=Mg,Al, Zr) perovskite type catalysts for oxidative coupling of methane (OCM) have been studied by using X ray diffraction (XRD),X ray photoelectron spectroscopy (XPS) and temperature programmed desorption of oxygen(O2 TPD) methods. It has been shown that doping the cations of lower valence (e.g. Mg2+ , Al3+ ) to the B site of SrTi0.9M0.1O3- δ perovskite type catalysts results in the higher content of adsorbed oxygen species on the surface of catalysts and thus higher C2 selectivity for OCM reaction. It is suggested that the oxygen vacancies of SrTi0.9M0.1O3- δ (M=Mg, Al, Zr) perovskite type catalysts are the sites responsible for oxygen activation, and the adsorbed oxygen species on the surface of SrTi0.9M0.1O3- δ catalysts are the main active species for OCM reaction.展开更多
A new compound 2 6[Co(H 2O) 2(VO) 8(OH) 4(PO 4) 8] has been hydrothermally synthesized. Single crystal X-ray analysis indicates that this compound crystallizes in a monoclinic system, space group P2 1/n with a=1.438 5...A new compound 2 6[Co(H 2O) 2(VO) 8(OH) 4(PO 4) 8] has been hydrothermally synthesized. Single crystal X-ray analysis indicates that this compound crystallizes in a monoclinic system, space group P2 1/n with a=1.438 5(3) nm, b=1.012 2(2) nm, c=1.832 5(4) nm, β=90.21°, V=2\^668 2(9) nm 3, Z=2, D c=2.112 g/cm 3, R=0.055, wR=0.149 7, S=1.037. The structure of 2 6[Co(H 2O) 2(VO) 8(OH) 4(PO 4) 8] is characterized by P-V-O layers constructed by [(VO) 4(OH) 2(PO 4) 4] 6- non-symmetric units. The P-V-O layers are pillared by [Co(H 2O) 2] 2+ group, resulting in the channels within which the protonated diaminoethane and H 3O + are located.展开更多
文摘The structure and catalytic properties of SrTi0.9M0.1O3- δ (M=Mg,Al, Zr) perovskite type catalysts for oxidative coupling of methane (OCM) have been studied by using X ray diffraction (XRD),X ray photoelectron spectroscopy (XPS) and temperature programmed desorption of oxygen(O2 TPD) methods. It has been shown that doping the cations of lower valence (e.g. Mg2+ , Al3+ ) to the B site of SrTi0.9M0.1O3- δ perovskite type catalysts results in the higher content of adsorbed oxygen species on the surface of catalysts and thus higher C2 selectivity for OCM reaction. It is suggested that the oxygen vacancies of SrTi0.9M0.1O3- δ (M=Mg, Al, Zr) perovskite type catalysts are the sites responsible for oxygen activation, and the adsorbed oxygen species on the surface of SrTi0.9M0.1O3- δ catalysts are the main active species for OCM reaction.
文摘A new compound 2 6[Co(H 2O) 2(VO) 8(OH) 4(PO 4) 8] has been hydrothermally synthesized. Single crystal X-ray analysis indicates that this compound crystallizes in a monoclinic system, space group P2 1/n with a=1.438 5(3) nm, b=1.012 2(2) nm, c=1.832 5(4) nm, β=90.21°, V=2\^668 2(9) nm 3, Z=2, D c=2.112 g/cm 3, R=0.055, wR=0.149 7, S=1.037. The structure of 2 6[Co(H 2O) 2(VO) 8(OH) 4(PO 4) 8] is characterized by P-V-O layers constructed by [(VO) 4(OH) 2(PO 4) 4] 6- non-symmetric units. The P-V-O layers are pillared by [Co(H 2O) 2] 2+ group, resulting in the channels within which the protonated diaminoethane and H 3O + are located.