常用多光谱遥感水体提取少有兼顾光谱与空间信息,致使水体提取的可靠性和准确性难以保证。在利用遥感水体光谱特性的同时,融入深度学习算法,提出归一化差分水体指数(normalized difference water index,NDWI)与深度学习联合的遥感水体...常用多光谱遥感水体提取少有兼顾光谱与空间信息,致使水体提取的可靠性和准确性难以保证。在利用遥感水体光谱特性的同时,融入深度学习算法,提出归一化差分水体指数(normalized difference water index,NDWI)与深度学习联合的遥感水体提取方法。该方法首先选取典型水体样本进行训练,构建深度学习卷积神经网络(convolutional neural networks,CNN)水体识别模型。其次,计算多光谱影像NDWI指数并分割成图斑,以图斑包络矩形构建初始的水体目标子区。最后,构建NDWI指数与CNN水体识别概率的联合估计模型,并以迭代运算实现最优化遥感水体提取。实验验证了该方法的高可靠性与准确性。相比常用方法,水体识别准确率高达94.19%,而错分率仅为5.04%,显著提高了水体提取精度。展开更多
为了快速准确获取田间作物生长营养水平信息,设计了作物冠层营养诊断光谱检测仪,并进行了小麦大田测试。系统由光学传感器,信号采集驱动模块和控制器组成。光学传感器可测量300~1 100 nm范围内连续光谱,信号采集驱动模块用于提供稳定电...为了快速准确获取田间作物生长营养水平信息,设计了作物冠层营养诊断光谱检测仪,并进行了小麦大田测试。系统由光学传感器,信号采集驱动模块和控制器组成。光学传感器可测量300~1 100 nm范围内连续光谱,信号采集驱动模块用于提供稳定电压以及数据的A/D转换。开发了光谱采集控制软件安装于控制器,主要功能包括接收、处理、显示和存储采集到的数据。应用该仪器进行了标定试验,并针对大田冬小麦开展了大田试验,试验结果表明该仪器所测反射率与美国ASD Field Spec Hand Held 2光谱辐射仪所测的反射率之间具有较高的相关性,相关系数最低为0.991 8。分析了冬小麦叶绿素含量指标SPAD值与仪器所测反射率之间的相关性。选出相关性较高的550~900 nm波段进行主成分分析建立叶绿素预测模型,建模R2C为0.575,模型检验R2V为0.595。结果表明利用研发的便携式光谱检测仪能有效评估小麦营养叶绿素含量,为小麦的精细栽培提供理论与技术支持。展开更多
利用遥感光谱无损、快速分析出氮肥的施用时期和施用模式,对于保护环境、产量及氮肥利用率的提高具有重要意义。利用FieldSpec 4Wide-Res Field Spectrum radiometer便携式地物光谱仪,测定了不同氮水平下小麦冠层和叶片两种模式光谱特...利用遥感光谱无损、快速分析出氮肥的施用时期和施用模式,对于保护环境、产量及氮肥利用率的提高具有重要意义。利用FieldSpec 4Wide-Res Field Spectrum radiometer便携式地物光谱仪,测定了不同氮水平下小麦冠层和叶片两种模式光谱特征及红边参数变化规律;提出一个新指数——归一化差异最大指数(normalized difference maximum index,NDMI),并分析其与叶面积指数(leaf area index,LAI)、SPAD(soil and plant analyzer development)值、MDA(malondialdehyde)含量、旗叶氮含量和产量的相关性。结果表明,小麦叶片原始光谱在开花后26d起800~1 330nm区间的光谱反射率以N3(1/3底施+1/3冬前追肥+1/3拔节期追肥)处理为最高,N1处理(1/2底施+1/2冬前追肥)次之。主要原因是由冬前和拔节期两个时期均施三分之一氮肥,增强了叶片光合能力。小麦冠层原始光谱,在400~700nm波段,N2(1/2底施+1/2拔节期追肥)处理最低;在760~1 368nm波段区间,由于群体结构不同,在开花期至灌浆中期N1处理的光谱反射率最高,N3处理次之;N3处理的冠层光谱反射率在开花后26和33d最高。建议用400~700和760~1 368nm波段的冠层原始光谱数据,分别来辨别小麦旗叶含氮量的高低及施肥模式。叶片模式下一阶微分光谱在500~750nm区间出现两个"峰",通过峰的位置偏移程度和偏移时期来估测施氮的模式。在670~740nm区间冠层一阶微分光谱值在开花期最高,开花后10d的一阶微分光谱值最低。在开花期至开花后10d N1处理的一阶微分光谱值高于N3处理;灌浆中期至开花后33dN3处理的一阶微分光谱值高于N1处理。可以通过一阶微分最大值来推测小麦所处的生育期和施肥的方式及施肥时期。在开花期至灌浆中期,冠层反射率一阶导数最大值(FD-Max)N1处理最高,N3处理次之;在开花后26~33d,N3处理的群体结构较其他处理密,导致其一阶导数最大值一直最高。四个处理叶片一阶导数最大值变化趋势不如冠层显著。四个处理的反射率一阶导数最大值对应的红边位置(REPFD-Max)中,N1和N3冠层REPFD-Max在灌浆中期后偏移显著;在开花后26~33d,N3处理的群体上层结构密,叶片宽且厚,冬前追施氮肥影响REPFD-Max偏移程度。基于NDVI基础上,筛选出一个新指数——归一化差异最大指数。冠层归一化差异最大指数(CNDMI)与农化参数的相关系数高于叶片归一化差异最大指数(LNDMI),且CNDMI与产量的相关性比LNDMI显著。冠层归一化差异最大指数与旗叶氮含量、SPAD值和MDA含量有着显著的相关性,相关系数r分别为0.812 88,0.928 21和-0.722 17。综上所述,借助光谱数据和红边参数可以推测小麦含氮量的高低,所处的生育期和施氮肥的模式,进而为田间施肥管理及施肥诊断提供依据。CNDMI与小麦产量有着更好的相关性,符合我国资源卫星的光谱波段范围,具有可实际操作性。展开更多
文摘为了快速准确获取田间作物生长营养水平信息,设计了作物冠层营养诊断光谱检测仪,并进行了小麦大田测试。系统由光学传感器,信号采集驱动模块和控制器组成。光学传感器可测量300~1 100 nm范围内连续光谱,信号采集驱动模块用于提供稳定电压以及数据的A/D转换。开发了光谱采集控制软件安装于控制器,主要功能包括接收、处理、显示和存储采集到的数据。应用该仪器进行了标定试验,并针对大田冬小麦开展了大田试验,试验结果表明该仪器所测反射率与美国ASD Field Spec Hand Held 2光谱辐射仪所测的反射率之间具有较高的相关性,相关系数最低为0.991 8。分析了冬小麦叶绿素含量指标SPAD值与仪器所测反射率之间的相关性。选出相关性较高的550~900 nm波段进行主成分分析建立叶绿素预测模型,建模R2C为0.575,模型检验R2V为0.595。结果表明利用研发的便携式光谱检测仪能有效评估小麦营养叶绿素含量,为小麦的精细栽培提供理论与技术支持。