As friction, intrinsic steady-state nonlinearity poses a challenging dilemma to the control system of 3-DOF (three degree of freedom) flight simulator, a novel hybrid control strategy of nonlinear PID (proportional...As friction, intrinsic steady-state nonlinearity poses a challenging dilemma to the control system of 3-DOF (three degree of freedom) flight simulator, a novel hybrid control strategy of nonlinear PID (proportionalintegral-derivative) with additional FFC (feed-forward controller) is proposed, and the hardware-in-the-loop simulation results are also given. Based on the description of 3-DOF flight simulator, a novel nonlinear PID theory is well introduced. Then a nonlinear PID controller with additional FFC is designed. Subsequently, the loop structure of 3-DOF flight simulator is also designed. Finally, a series of hardware-in-the-loop simulation experiments are undertaken to verify the feasibility and effectiveness of the proposed nonlinear PID controller with additional FFC for 3-DOF flight simulator.展开更多
A nonlinear flow reservoir mathematical model was established based on the flow characteristic of low-permeability reservoir.The well-grid equations were deduced and the dimensionless permeability coefficient was intr...A nonlinear flow reservoir mathematical model was established based on the flow characteristic of low-permeability reservoir.The well-grid equations were deduced and the dimensionless permeability coefficient was introduced to describe the permeability variation of nonlinear flow.The nonlinear flow numerical simulation program was compiled based on black-oil model.A quarter of five-spot well unit was simulated to study the effect of nonlinear flow on the exploitation of low-permeability reservoir.The comprehensive comparison and analysis of the simulation results of Darcy flow,quasi-linear flow and nonlinear flow were provided.The dimensionless permeability coefficient distribution was gained to describe the nonlinear flow degree.The result shows that compared with the results of Darcy flow,when considering nonlinear flow,the oil production is low,and production decline is rapid.The fluid flow in reservoir consumes more driving energy,which reduces the water flooding efficiency.Darcy flow model overstates the reservoir flow capability,and quasi-linear flow model overstates the reservoir flow resistance.The flow ability of the formation near the well and artificial fracture is strong while the flow ability of the formation far away from the main streamline is weak.The nonlinear flow area is much larger than that of quasi-linear flow during the fluid flow in low-permeability reservoir.The water propelling speed of nonlinear flow is greatly slower than that of Darcy flow in the vertical direction of artificial fracture,and the nonlinear flow should be taken into account in the well pattern arrangement of low-permeability reservoir.展开更多
The paper presents some problems of lightning overvoltage modeling in transmission lines with nonlinear elements.The presented results were obtained mostly for fast front transients of subsequent lightning return stro...The paper presents some problems of lightning overvoltage modeling in transmission lines with nonlinear elements.The presented results were obtained mostly for fast front transients of subsequent lightning return stroke currents.The effectiveness of numerical algorithms of nonlinear models and possibilities of their development for such transients are analyzed.Computer simulations carried out by application of EMTP show that nonlinear models of back-flashover and ZnO arresters work properly,while the implemented corona model can not be used for relatively large peak values of subsequent lightning return-stroke currents.展开更多
Crustal stresses play an important role in both exploration and development in the oil and gas industry.However,it is difficult to simulate crustal stress distributions accurately,because of the incompatibilities that...Crustal stresses play an important role in both exploration and development in the oil and gas industry.However,it is difficult to simulate crustal stress distributions accurately,because of the incompatibilities that exist among different software.Here,a series of algorithms is developed and integrated in the Petrel2ANSYS to carry out two-way conversions between the 3D attribute models that employ corner-point grids used in Petrel and the 3D finite-element grids used in ANSYS.Furthermore,a modified method of simulating stress characteristics and analyzing stress fields using the finite-element method and multiple finely resolved 3D models is proposed.Compared to the traditional finite-element simulation-based approach,which involves describing the heterogeneous within a rock body or sedimentary facies in detail and simulating the stress distribution,the single grid cell-based approach focuses on a greater degree on combining the rock mechanics described by 3D corner-point grid models with the finely resolved material characteristics of 3D finite-element models.Different models that use structured and unstructured grids are verified in Petrel2ANSYS to assess the feasibility.In addition,with minor modifications,platforms based on the present algorithms can be extended to other models to convert corner-point grids to the finite-element grids constructed by other software.展开更多
Two central schemes of finite difference (FD) up to different accuracy orders of space sampling step Dx (Fourth order and Sixth order respectively) were used to study the 1-D nonlinear P-wave propagation in the nonlin...Two central schemes of finite difference (FD) up to different accuracy orders of space sampling step Dx (Fourth order and Sixth order respectively) were used to study the 1-D nonlinear P-wave propagation in the nonlinear solid media by the numerical method. Distinctly different from the case of numerical modeling of linear elastic wave, there may be several difficulties in the numerical treatment to the nonlinear partial differential equation, such as the steep gradients, shocks and unphysical oscillations. All of them are the great obstacles to the stability and conver-gence of numerical calculation. Fortunately, the comparative study on the modeling of nonlinear wave by the two FD schemes presented in the paper can provide us with an easy method to keep the stability and convergence in the calculation field when the product of the absolute value of nonlinear coefficient and the value of u/x are small enough, namely, the value of bu/x is much smaller than 1. Several results are founded in the numerical study of nonlinear P-wave propagation, such as the waveform aberration, the generation and growth of harmonic wave and the energy redistribution among different frequency components. All of them will be more violent when the initial amplitude A0 is larger or the nonlinearity of medium is stronger. Correspondingly, we have found that the nonlinear P-wave propagation velocity will change with different initial frequency f of source wave or the wave velocity c (equal to the P-wave velocity in the same medium without considering nonlinearity).展开更多
基金the National Natural Science Foundation of China (60604009)Aeronautical Science Foundationof China(2006ZC51039)Beijing NOVA Program (2007A017).
文摘As friction, intrinsic steady-state nonlinearity poses a challenging dilemma to the control system of 3-DOF (three degree of freedom) flight simulator, a novel hybrid control strategy of nonlinear PID (proportionalintegral-derivative) with additional FFC (feed-forward controller) is proposed, and the hardware-in-the-loop simulation results are also given. Based on the description of 3-DOF flight simulator, a novel nonlinear PID theory is well introduced. Then a nonlinear PID controller with additional FFC is designed. Subsequently, the loop structure of 3-DOF flight simulator is also designed. Finally, a series of hardware-in-the-loop simulation experiments are undertaken to verify the feasibility and effectiveness of the proposed nonlinear PID controller with additional FFC for 3-DOF flight simulator.
基金Project(10672187) supported by the National Natural Science Foundation of ChinaProject(2008ZX05000-013-02) supported by the National Science and Technology Major Program of China
文摘A nonlinear flow reservoir mathematical model was established based on the flow characteristic of low-permeability reservoir.The well-grid equations were deduced and the dimensionless permeability coefficient was introduced to describe the permeability variation of nonlinear flow.The nonlinear flow numerical simulation program was compiled based on black-oil model.A quarter of five-spot well unit was simulated to study the effect of nonlinear flow on the exploitation of low-permeability reservoir.The comprehensive comparison and analysis of the simulation results of Darcy flow,quasi-linear flow and nonlinear flow were provided.The dimensionless permeability coefficient distribution was gained to describe the nonlinear flow degree.The result shows that compared with the results of Darcy flow,when considering nonlinear flow,the oil production is low,and production decline is rapid.The fluid flow in reservoir consumes more driving energy,which reduces the water flooding efficiency.Darcy flow model overstates the reservoir flow capability,and quasi-linear flow model overstates the reservoir flow resistance.The flow ability of the formation near the well and artificial fracture is strong while the flow ability of the formation far away from the main streamline is weak.The nonlinear flow area is much larger than that of quasi-linear flow during the fluid flow in low-permeability reservoir.The water propelling speed of nonlinear flow is greatly slower than that of Darcy flow in the vertical direction of artificial fracture,and the nonlinear flow should be taken into account in the well pattern arrangement of low-permeability reservoir.
文摘The paper presents some problems of lightning overvoltage modeling in transmission lines with nonlinear elements.The presented results were obtained mostly for fast front transients of subsequent lightning return stroke currents.The effectiveness of numerical algorithms of nonlinear models and possibilities of their development for such transients are analyzed.Computer simulations carried out by application of EMTP show that nonlinear models of back-flashover and ZnO arresters work properly,while the implemented corona model can not be used for relatively large peak values of subsequent lightning return-stroke currents.
基金Project(2017ZX05013002-002)supported by Major National Science and Technology Projects of ChinaProject(RIPED-2016-JS-276)supported by Petro-China Research Institute of Petroleum Exploration and Development
文摘Crustal stresses play an important role in both exploration and development in the oil and gas industry.However,it is difficult to simulate crustal stress distributions accurately,because of the incompatibilities that exist among different software.Here,a series of algorithms is developed and integrated in the Petrel2ANSYS to carry out two-way conversions between the 3D attribute models that employ corner-point grids used in Petrel and the 3D finite-element grids used in ANSYS.Furthermore,a modified method of simulating stress characteristics and analyzing stress fields using the finite-element method and multiple finely resolved 3D models is proposed.Compared to the traditional finite-element simulation-based approach,which involves describing the heterogeneous within a rock body or sedimentary facies in detail and simulating the stress distribution,the single grid cell-based approach focuses on a greater degree on combining the rock mechanics described by 3D corner-point grid models with the finely resolved material characteristics of 3D finite-element models.Different models that use structured and unstructured grids are verified in Petrel2ANSYS to assess the feasibility.In addition,with minor modifications,platforms based on the present algorithms can be extended to other models to convert corner-point grids to the finite-element grids constructed by other software.
基金Project of Knowledge Innovation Program from Chinese Academy of Sciences (KZCX2-109).
文摘Two central schemes of finite difference (FD) up to different accuracy orders of space sampling step Dx (Fourth order and Sixth order respectively) were used to study the 1-D nonlinear P-wave propagation in the nonlinear solid media by the numerical method. Distinctly different from the case of numerical modeling of linear elastic wave, there may be several difficulties in the numerical treatment to the nonlinear partial differential equation, such as the steep gradients, shocks and unphysical oscillations. All of them are the great obstacles to the stability and conver-gence of numerical calculation. Fortunately, the comparative study on the modeling of nonlinear wave by the two FD schemes presented in the paper can provide us with an easy method to keep the stability and convergence in the calculation field when the product of the absolute value of nonlinear coefficient and the value of u/x are small enough, namely, the value of bu/x is much smaller than 1. Several results are founded in the numerical study of nonlinear P-wave propagation, such as the waveform aberration, the generation and growth of harmonic wave and the energy redistribution among different frequency components. All of them will be more violent when the initial amplitude A0 is larger or the nonlinearity of medium is stronger. Correspondingly, we have found that the nonlinear P-wave propagation velocity will change with different initial frequency f of source wave or the wave velocity c (equal to the P-wave velocity in the same medium without considering nonlinearity).