Extended Kalman filter (EKF) is one of the most widely used methods for nonlinear system estimation. A new filtering algorithm, called particle filtering (PF) is introduced. PF can yield better performance than th...Extended Kalman filter (EKF) is one of the most widely used methods for nonlinear system estimation. A new filtering algorithm, called particle filtering (PF) is introduced. PF can yield better performance than that of EKF, because PF does not involve the linearization approximating to nonlinear systems, that is required by the EKF. PF has been shown to be a superior alternative to the EKF in a variety of applications. The base idea of PF is the approximation of relevant probabifity distributions using the concepts of sequential importance sampling and approximation of probability distributions using a set of discrete random samples with associated weights. PF methods still need to be improved in the aspects of accuracy and calculating speed.展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conv...A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one.展开更多
Particle filters have been widely used in nonlinear/non- Gaussian Bayesian state estimation problems. However, efficient distribution of the limited number of particles (n state space remains a critical issue in desi...Particle filters have been widely used in nonlinear/non- Gaussian Bayesian state estimation problems. However, efficient distribution of the limited number of particles (n state space remains a critical issue in designing a particle filter. A simplified unscented particle filter (SUPF) is presented, where particles are drawn partly from the transition prior density (TPD) and partly from the Gaussian approximate posterior density (GAPD) obtained by a unscented Kalman filter. The ratio of the number of particles drawn from TPD to the number of particles drawn from GAPD is adaptively determined by the maximum likelihood ratio (MLR). The MLR is defined to measure how well the particles, drawn from the TPD, match the likelihood model. It is shown that the particle set generated by this sampling strategy is more close to the significant region in state space and tends to yield more accurate results. Simulation results demonstrate that the versatility and es- timation accuracy of SUPF exceed that of standard particle filter, extended Kalman particle filter and unscented particle filter.展开更多
This paper is concerned with the recursive filtering problem for a class of discrete-time nonlinear stochastic systems in the presence of multi-sensor measurement delay. The delay occurs in a multi-step and asynchrono...This paper is concerned with the recursive filtering problem for a class of discrete-time nonlinear stochastic systems in the presence of multi-sensor measurement delay. The delay occurs in a multi-step and asynchronous manner, and the delay probability of each sensor is assumed to be known or unknown. Firstly, a new model is constructed to describe the measurement process, based on which a new particle filter is developed with the ability to fuse multi-sensor information in the case of known delay probability.In addition, an online delay probability estimation module is introduced in the particle filtering framework, which leads to another new filter that can be implemented without the prior knowledge of delay probability. More importantly, since there is no complex iterative operation, the resulting filter can be implemented recursively and is suitable for many real-time applications. Simulation results show the effectiveness of the proposed filters.展开更多
The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentia...The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentially meansquare stable and ensures a prescribed H∞ performance. A sufficient condition for the solvability of this problem is given in terms of linear matrix inequalities(LMIs). A simulation example is presented to demonstrate the effectiveness of the proposed design approach.展开更多
The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of d...The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of dynamic states of the vehicles under the cooperative environments is a fundamental issue. By integrating multiple sensors, localization modules in OBUs(on-board units) require effective estimation solutions to cope with various operation conditions. Based on the filtering estimation framework for sensor fusion, an ensemble Kalman filter(En KF) is introduced to estimate the vehicle's state with observations from navigation satellites and neighborhood vehicles, and the original En KF solution is improved by using the cubature transformation to fulfill the requirements of the nonlinearity approximation capability, where the conventional ensemble analysis operation in En KF is modified to enhance the estimation performance without increasing the computational burden significantly. Simulation results from a nonlinear case and the cooperative vehicle localization scenario illustrate the capability of the proposed filter, which is crucial to realize the active safety of connected vehicles in future intelligent transportation.展开更多
A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed. Firstly, neural networks are employed to approximate the nonlinearities. Next, the nonlinear dynamic system is represe...A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed. Firstly, neural networks are employed to approximate the nonlinearities. Next, the nonlinear dynamic system is represented by the mode-dependent linear difference inclusion (LDI). Finally, based on the LDI model, a neural network-based nonlinear filter (NNBNF) is developed to minimize the upper bound of H∞ gain index of the estimation error under some linear matrix inequality (LMI) constraints. Compared with the existing nonlinear filters, NNBNF is time-invariant and numerically tractable. The validity and applicability of the proposed approach are successfully demonstrated in an illustrative example.展开更多
This paper is concerned with the problem of robust sliding-mode filtering for a class of uncertain nonlinear discrete-time systems with time-delays. The nonlinearities are assumed to satisfy global Lipschitz condition...This paper is concerned with the problem of robust sliding-mode filtering for a class of uncertain nonlinear discrete-time systems with time-delays. The nonlinearities are assumed to satisfy global Lipschitz conditions and parameter uncertainties are supposed to reside in a polytope. The resulting filter is of the Luenberger type with the discontinuous form. A sufficient condition with delay-dependency is proposed for existence of such a filter. And the desired filter can be found by solving a set of matrix inequalities. The resulting filter adapts for the systems whose noise input is real functional bounded and not be required to be energy bounded. A numerical example is given to illustrate the effectiveness of the proposed design method.展开更多
The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlineariti...The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach.展开更多
文摘Extended Kalman filter (EKF) is one of the most widely used methods for nonlinear system estimation. A new filtering algorithm, called particle filtering (PF) is introduced. PF can yield better performance than that of EKF, because PF does not involve the linearization approximating to nonlinear systems, that is required by the EKF. PF has been shown to be a superior alternative to the EKF in a variety of applications. The base idea of PF is the approximation of relevant probabifity distributions using the concepts of sequential importance sampling and approximation of probability distributions using a set of discrete random samples with associated weights. PF methods still need to be improved in the aspects of accuracy and calculating speed.
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
文摘A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one.
基金supported by the National Natural Science Foundation of China(61271296)
文摘Particle filters have been widely used in nonlinear/non- Gaussian Bayesian state estimation problems. However, efficient distribution of the limited number of particles (n state space remains a critical issue in designing a particle filter. A simplified unscented particle filter (SUPF) is presented, where particles are drawn partly from the transition prior density (TPD) and partly from the Gaussian approximate posterior density (GAPD) obtained by a unscented Kalman filter. The ratio of the number of particles drawn from TPD to the number of particles drawn from GAPD is adaptively determined by the maximum likelihood ratio (MLR). The MLR is defined to measure how well the particles, drawn from the TPD, match the likelihood model. It is shown that the particle set generated by this sampling strategy is more close to the significant region in state space and tends to yield more accurate results. Simulation results demonstrate that the versatility and es- timation accuracy of SUPF exceed that of standard particle filter, extended Kalman particle filter and unscented particle filter.
基金supported by the National Natural Science Foundation of China(6147322711472222)+3 种基金the Fundamental Research Funds for the Central Universities(3102015ZY001)the Aerospace Technology Support Fund of China(2014-HT-XGD)the Natural Science Foundation of Shaanxi Province(2015JM6304)the Aeronautical Science Foundation of China(20151353018)
文摘This paper is concerned with the recursive filtering problem for a class of discrete-time nonlinear stochastic systems in the presence of multi-sensor measurement delay. The delay occurs in a multi-step and asynchronous manner, and the delay probability of each sensor is assumed to be known or unknown. Firstly, a new model is constructed to describe the measurement process, based on which a new particle filter is developed with the ability to fuse multi-sensor information in the case of known delay probability.In addition, an online delay probability estimation module is introduced in the particle filtering framework, which leads to another new filter that can be implemented without the prior knowledge of delay probability. More importantly, since there is no complex iterative operation, the resulting filter can be implemented recursively and is suitable for many real-time applications. Simulation results show the effectiveness of the proposed filters.
文摘The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentially meansquare stable and ensures a prescribed H∞ performance. A sufficient condition for the solvability of this problem is given in terms of linear matrix inequalities(LMIs). A simulation example is presented to demonstrate the effectiveness of the proposed design approach.
基金Project(4144081)supported by Beijing Natural Science Foundation,ChinaProjects(61403021,U1334211,61490705)supported by the National Natural Science Foundation of China+1 种基金Project(2015RC015)supported by the Fundamental Research Funds for Central Universities,ChinaProject supported by the Foundation of Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control,China
文摘The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of dynamic states of the vehicles under the cooperative environments is a fundamental issue. By integrating multiple sensors, localization modules in OBUs(on-board units) require effective estimation solutions to cope with various operation conditions. Based on the filtering estimation framework for sensor fusion, an ensemble Kalman filter(En KF) is introduced to estimate the vehicle's state with observations from navigation satellites and neighborhood vehicles, and the original En KF solution is improved by using the cubature transformation to fulfill the requirements of the nonlinearity approximation capability, where the conventional ensemble analysis operation in En KF is modified to enhance the estimation performance without increasing the computational burden significantly. Simulation results from a nonlinear case and the cooperative vehicle localization scenario illustrate the capability of the proposed filter, which is crucial to realize the active safety of connected vehicles in future intelligent transportation.
基金the National Natural Science Foundation of China (60574001)Program for New CenturyExcellent Talents in University (NCET-05-0485) and PIRTJiangnan
文摘A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed. Firstly, neural networks are employed to approximate the nonlinearities. Next, the nonlinear dynamic system is represented by the mode-dependent linear difference inclusion (LDI). Finally, based on the LDI model, a neural network-based nonlinear filter (NNBNF) is developed to minimize the upper bound of H∞ gain index of the estimation error under some linear matrix inequality (LMI) constraints. Compared with the existing nonlinear filters, NNBNF is time-invariant and numerically tractable. The validity and applicability of the proposed approach are successfully demonstrated in an illustrative example.
基金Supported by National Natural Science Foundation of P. R. China (69874008)
文摘This paper is concerned with the problem of robust sliding-mode filtering for a class of uncertain nonlinear discrete-time systems with time-delays. The nonlinearities are assumed to satisfy global Lipschitz conditions and parameter uncertainties are supposed to reside in a polytope. The resulting filter is of the Luenberger type with the discontinuous form. A sufficient condition with delay-dependency is proposed for existence of such a filter. And the desired filter can be found by solving a set of matrix inequalities. The resulting filter adapts for the systems whose noise input is real functional bounded and not be required to be energy bounded. A numerical example is given to illustrate the effectiveness of the proposed design method.
基金supported partly by the National Natural Science Foundation of China(60574001)the Program for New Century Excellent Talents in University(050485)the Program for Innovative Research Team of Jiangnan University.
文摘The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach.