期刊文献+
共找到1,206篇文章
< 1 2 61 >
每页显示 20 50 100
Study of nonlinear filter methods: particle filter 被引量:2
1
作者 Zhang Weiming Du Gang +1 位作者 Zhong Shan Zhang Yanhua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期1-5,共5页
Extended Kalman filter (EKF) is one of the most widely used methods for nonlinear system estimation. A new filtering algorithm, called particle filtering (PF) is introduced. PF can yield better performance than th... Extended Kalman filter (EKF) is one of the most widely used methods for nonlinear system estimation. A new filtering algorithm, called particle filtering (PF) is introduced. PF can yield better performance than that of EKF, because PF does not involve the linearization approximating to nonlinear systems, that is required by the EKF. PF has been shown to be a superior alternative to the EKF in a variety of applications. The base idea of PF is the approximation of relevant probabifity distributions using the concepts of sequential importance sampling and approximation of probability distributions using a set of discrete random samples with associated weights. PF methods still need to be improved in the aspects of accuracy and calculating speed. 展开更多
关键词 nonlinear extended Kalman filter particle filter Monte Carlo methods.
在线阅读 下载PDF
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:3
2
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm nonlinear filtering algorithm
在线阅读 下载PDF
Modified unscented particle filter for nonlinear Bayesian tracking 被引量:14
3
作者 Zhan Ronghui Xin Qin Wan Jianwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期7-14,共8页
A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conv... A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one. 展开更多
关键词 Bayesian estimation modified unscented particle filter nonlinear filtering unscented Kalman filter
在线阅读 下载PDF
Simplified unscented particle filter for nonlinear/non-Gaussian Bayesian estimation 被引量:6
4
作者 Junyi Zuo Yingna Jia Quanxue Gao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期537-544,共8页
Particle filters have been widely used in nonlinear/non- Gaussian Bayesian state estimation problems. However, efficient distribution of the limited number of particles (n state space remains a critical issue in desi... Particle filters have been widely used in nonlinear/non- Gaussian Bayesian state estimation problems. However, efficient distribution of the limited number of particles (n state space remains a critical issue in designing a particle filter. A simplified unscented particle filter (SUPF) is presented, where particles are drawn partly from the transition prior density (TPD) and partly from the Gaussian approximate posterior density (GAPD) obtained by a unscented Kalman filter. The ratio of the number of particles drawn from TPD to the number of particles drawn from GAPD is adaptively determined by the maximum likelihood ratio (MLR). The MLR is defined to measure how well the particles, drawn from the TPD, match the likelihood model. It is shown that the particle set generated by this sampling strategy is more close to the significant region in state space and tends to yield more accurate results. Simulation results demonstrate that the versatility and es- timation accuracy of SUPF exceed that of standard particle filter, extended Kalman particle filter and unscented particle filter. 展开更多
关键词 nonlinear filtering particle filter unscented Kalman filter importance density function.
在线阅读 下载PDF
Particle filter for nonlinear systems with multi-sensor asynchronous random delays 被引量:4
5
作者 Junyi Zuo Xiaoping Zhong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第6期1064-1071,共8页
This paper is concerned with the recursive filtering problem for a class of discrete-time nonlinear stochastic systems in the presence of multi-sensor measurement delay. The delay occurs in a multi-step and asynchrono... This paper is concerned with the recursive filtering problem for a class of discrete-time nonlinear stochastic systems in the presence of multi-sensor measurement delay. The delay occurs in a multi-step and asynchronous manner, and the delay probability of each sensor is assumed to be known or unknown. Firstly, a new model is constructed to describe the measurement process, based on which a new particle filter is developed with the ability to fuse multi-sensor information in the case of known delay probability.In addition, an online delay probability estimation module is introduced in the particle filtering framework, which leads to another new filter that can be implemented without the prior knowledge of delay probability. More importantly, since there is no complex iterative operation, the resulting filter can be implemented recursively and is suitable for many real-time applications. Simulation results show the effectiveness of the proposed filters. 展开更多
关键词 particle filter nonlinear dynamic system state estima tion measurement delay multiple sensors
在线阅读 下载PDF
Nonlinear H_∞ filtering for interconnected Markovian jump systems
6
作者 Zhang Xiaomei Zheng Yufan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期138-146,共9页
The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentia... The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentially meansquare stable and ensures a prescribed H∞ performance. A sufficient condition for the solvability of this problem is given in terms of linear matrix inequalities(LMIs). A simulation example is presented to demonstrate the effectiveness of the proposed design approach. 展开更多
关键词 nonlinear H∞ filtering Markovian jump systems interconnected systems linear matrix inequalities
在线阅读 下载PDF
State estimation of connected vehicles using a nonlinear ensemble filter
7
作者 刘江 陈华展 +1 位作者 蔡伯根 王剑 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2406-2415,共10页
The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of d... The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of dynamic states of the vehicles under the cooperative environments is a fundamental issue. By integrating multiple sensors, localization modules in OBUs(on-board units) require effective estimation solutions to cope with various operation conditions. Based on the filtering estimation framework for sensor fusion, an ensemble Kalman filter(En KF) is introduced to estimate the vehicle's state with observations from navigation satellites and neighborhood vehicles, and the original En KF solution is improved by using the cubature transformation to fulfill the requirements of the nonlinearity approximation capability, where the conventional ensemble analysis operation in En KF is modified to enhance the estimation performance without increasing the computational burden significantly. Simulation results from a nonlinear case and the cooperative vehicle localization scenario illustrate the capability of the proposed filter, which is crucial to realize the active safety of connected vehicles in future intelligent transportation. 展开更多
关键词 connected vehicles state estimation cooperative positioning nonlinear ensemble filter global navigation satellite system (GNSS) dedicated short range communication (DSRC)
在线阅读 下载PDF
Neural network-based H∞ filtering for nonlinear systems with time-delays
8
作者 Luan Xiaoli Liu Fei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期141-147,共7页
A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed. Firstly, neural networks are employed to approximate the nonlinearities. Next, the nonlinear dynamic system is represe... A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed. Firstly, neural networks are employed to approximate the nonlinearities. Next, the nonlinear dynamic system is represented by the mode-dependent linear difference inclusion (LDI). Finally, based on the LDI model, a neural network-based nonlinear filter (NNBNF) is developed to minimize the upper bound of H∞ gain index of the estimation error under some linear matrix inequality (LMI) constraints. Compared with the existing nonlinear filters, NNBNF is time-invariant and numerically tractable. The validity and applicability of the proposed approach are successfully demonstrated in an illustrative example. 展开更多
关键词 H∞ filtering nonlinear system TIME-DELAY neural network linear matrix inequality
在线阅读 下载PDF
Robust Sliding-mode Filtering for a Class of Uncertain Nonlinear Discrete-time State-delayed Systems 被引量:2
9
作者 WU Li-Gang WANG Chang-Hong ZENG Qing-Shuang GAO Hui-Jun 《自动化学报》 EI CSCD 北大核心 2006年第1期96-100,共5页
This paper is concerned with the problem of robust sliding-mode filtering for a class of uncertain nonlinear discrete-time systems with time-delays. The nonlinearities are assumed to satisfy global Lipschitz condition... This paper is concerned with the problem of robust sliding-mode filtering for a class of uncertain nonlinear discrete-time systems with time-delays. The nonlinearities are assumed to satisfy global Lipschitz conditions and parameter uncertainties are supposed to reside in a polytope. The resulting filter is of the Luenberger type with the discontinuous form. A sufficient condition with delay-dependency is proposed for existence of such a filter. And the desired filter can be found by solving a set of matrix inequalities. The resulting filter adapts for the systems whose noise input is real functional bounded and not be required to be energy bounded. A numerical example is given to illustrate the effectiveness of the proposed design method. 展开更多
关键词 鲁棒控制 滑动模式 滤波器 离散系统 状态延迟 线性矩阵不等式
在线阅读 下载PDF
Exponential passive filtering for a class of nonlinear jump systems 被引量:3
10
作者 He Shuping Liu Fei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期829-837,共9页
The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlineariti... The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach. 展开更多
关键词 nonlinear Markov jump systems UNCERTAINTIES TIME-DELAYS passive filter exponentially stochastically stable linear matrix inequalities.
在线阅读 下载PDF
多噪声混合干扰系统的非线性滤波
11
作者 冯肖亮 郭亚光 闫晶晶 《控制工程》 北大核心 2025年第7期1177-1183,共7页
针对一类受高斯噪声和非高斯噪声混合干扰的非线性系统的滤波问题,若将混合噪声作为一类非高斯噪声进行处理,则滤波精度会因为忽略高斯噪声特性而受到影响。为此,基于“系统拆分+算法融合”的思想,设计了一种新的非高斯非线性滤波算法... 针对一类受高斯噪声和非高斯噪声混合干扰的非线性系统的滤波问题,若将混合噪声作为一类非高斯噪声进行处理,则滤波精度会因为忽略高斯噪声特性而受到影响。为此,基于“系统拆分+算法融合”的思想,设计了一种新的非高斯非线性滤波算法。首先,引入系统拆分权重,将多噪声混合干扰下的非线性系统拆分为若干个受单类噪声影响的子系统;然后,依据各个子系统的噪声特性设计对应的子滤波算法;最后,对各子滤波算法的滤波结果进行融合。此外,介绍了平分和动态更新2种权重设计方法。仿真结果表明,相比于将多类噪声视为一类高斯噪声或非高斯噪声的非线性滤波算法,所提算法在滤波精度方面具有明显优势。 展开更多
关键词 混合噪声 非线性滤波 系统拆分 算法融合
在线阅读 下载PDF
一种基于长短期记忆网络的雷达目标跟踪算法
12
作者 张正文 向严谨 廖桂生 《现代雷达》 北大核心 2025年第2期83-90,共8页
在道路交通系统中,毫米波雷达以其分辨率高和抗干扰能力强的特点成为了热门的目标运动信息采集传感器。传统的目标跟踪算法在雷达观测信息丢失的情况下会出现跟踪误差较大或无法进行目标跟踪的现象。针对这一问题,文中提出了一种基于长... 在道路交通系统中,毫米波雷达以其分辨率高和抗干扰能力强的特点成为了热门的目标运动信息采集传感器。传统的目标跟踪算法在雷达观测信息丢失的情况下会出现跟踪误差较大或无法进行目标跟踪的现象。针对这一问题,文中提出了一种基于长短期记忆(LSTM)网络的雷达目标跟踪算法,在雷达观测值正常时,利用LSTM网络的记忆函数,对雷达的观测值进行训练并预测;当雷达观测值丢失时,利用LSTM网络为扩展卡尔曼算法提供观测值的预测值,以保证扩展卡尔曼算法能够继续对目标进行跟踪,达到降低目标跟踪误差的目的。文中通过雷达实测数据对LSTM网络进行训练,并针对直线和曲线两种运动状态进行了仿真验证分析,仿真结果表明,提出的目标跟踪算法在雷达的观测值丢失的情况下仍然可以对目标进行跟踪,并有效地降低了目标跟踪算法的误差。 展开更多
关键词 毫米波雷达 目标跟踪 长短期记忆网络 扩展卡尔曼滤波 非线性滤波
在线阅读 下载PDF
改进容积卡尔曼滤波的多目标多模态跟踪算法
13
作者 刘德儿 程健康 刘峻廷 《传感技术学报》 北大核心 2025年第7期1253-1261,共9页
高效安全的多目标跟踪技术是智能汽车行驶过程中的重要环节,然而目前许多方法忽略了误检目标可能对行驶安全性造成的潜在影响。为了减少误检目标的出现,提出了一种基于多传感器融合的双重关联机制,首先将轨迹与点云域和图像域中同时检... 高效安全的多目标跟踪技术是智能汽车行驶过程中的重要环节,然而目前许多方法忽略了误检目标可能对行驶安全性造成的潜在影响。为了减少误检目标的出现,提出了一种基于多传感器融合的双重关联机制,首先将轨迹与点云域和图像域中同时检测到的目标相关联并使用卡尔曼滤波进行更新,其次将未关联的轨迹与仅出现在点云域中的目标相关联,其中第一步未关联的目标定义为新轨迹,而第二步未关联的目标删除,所提方法可以极大地减少智能车辆行驶过程中误检目标的出现,从而显著提升行驶的安全性。同时,针对一些采用非线性卡尔曼滤波器的方法中在转弯过程中目标框偏移的问题,提出了一种改进的容积卡尔曼滤波器。该方法利用IMU数据来判断车辆的行驶状态,并自适应地调整估计误差矩阵,有效消除了车辆转弯对目标行驶状态估计的负面影响。在Kitti多目标跟踪数据集上进行测试的结果显示,所提算法有很高的优越性,HOTA(High Object Track Accuracy)达到78.00,MOTA(Multi-Object Track Accuracy)达到88.85,FPS达到200,在保持高精度的同时能很好满足实时性要求。 展开更多
关键词 自动驾驶 多目标跟踪 改进容积卡尔曼滤波 非线性运动模型 传感器融合
在线阅读 下载PDF
利用匹配滤波的调频连续波激光测距技术研究 被引量:2
14
作者 张鹏 封治华 +5 位作者 张鹏飞 赵渊明 阮友田 韩文杰 张辉 康朝阳 《激光技术》 北大核心 2025年第1期53-61,共9页
基于差频解算的调频连续波激光测距技术存在测量距离短、易受噪声干扰、受非线性调频影响大的问题。为了在相同机制条件下解决此问题,提出了基于匹配滤波的调频连续波激光测距方法,改进相干探测光路,加入信号反转单元和信号共轭单元,将... 基于差频解算的调频连续波激光测距技术存在测量距离短、易受噪声干扰、受非线性调频影响大的问题。为了在相同机制条件下解决此问题,提出了基于匹配滤波的调频连续波激光测距方法,改进相干探测光路,加入信号反转单元和信号共轭单元,将混频器换成卷积器,同时满足系统响应与发射波形匹配,并进行了相关仿真实验。结果表明,相比差频解算方法,匹配滤波方法可实现两倍于差频解算方法的测距范围,信噪比提高了9.5 dB,在非线性调频误差为19.8 MHz、198 MHz和396 MHz条件下均能得到较高分辨率的距离谱,表现出较好的抵抗非线性调频的能力。此研究可为该领域的科研工作者提供技术指导和新的思路。 展开更多
关键词 激光技术 调频连续波 匹配滤波 激光测距 信噪比 非线性
在线阅读 下载PDF
基于自然梯度的非线性变分贝叶斯滤波算法 被引量:1
15
作者 胡玉梅 潘泉 +2 位作者 邓豹 郭振 陈立峰 《自动化学报》 北大核心 2025年第2期427-444,共18页
在统计流形空间中,从信息几何角度考虑非线性状态后验分布近似的实质是后验分布与相应参数化变分分布之间的Kullback-Leibler(KL)散度最小化问题,同时也可以转化为变分置信下界的最大化问题.为了提升非线性系统状态估计的精度,在高斯系... 在统计流形空间中,从信息几何角度考虑非线性状态后验分布近似的实质是后验分布与相应参数化变分分布之间的Kullback-Leibler(KL)散度最小化问题,同时也可以转化为变分置信下界的最大化问题.为了提升非线性系统状态估计的精度,在高斯系统假设条件下结合变分贝叶斯(Variational Bayes,VB)推断和Fisher信息矩阵推导出置信下界的自然梯度,并通过分析其信息几何意义,阐述在统计流形空间中置信下界沿其方向不断迭代增大,实现变分分布与后验分布的“紧密”近似;在此基础上,以状态估计及其误差协方差作为变分超参数,结合最优估计理论给出一种基于自然梯度的非线性变分贝叶斯滤波算法;最后,通过天基光学传感器量测条件下近地轨道卫星跟踪定轨和纯角度被动传感器量测条件下运动目标跟踪仿真实验验证,与对比算法相比,所提算法具有更高的精度. 展开更多
关键词 非线性滤波 信息几何 变分贝叶斯推断 自然梯度 Fisher信息矩阵
在线阅读 下载PDF
应用于发电机动态状态估计的鲁棒EKF算法
16
作者 靳越 李桢森 +1 位作者 李岩 孙娜 《机械设计与制造》 北大核心 2025年第10期183-187,193,共6页
鉴于现有的滤波算法在处理非线性同步发电机系统的动态状态估计问题时难有满意的滤波效果,这里提出了一种鲁棒扩展卡尔曼滤波(EKF)算法。该算法保留了非线性模型泰勒级数展开式的高阶项,并将其等效为满足范数有界的不确定线性矩阵形式... 鉴于现有的滤波算法在处理非线性同步发电机系统的动态状态估计问题时难有满意的滤波效果,这里提出了一种鲁棒扩展卡尔曼滤波(EKF)算法。该算法保留了非线性模型泰勒级数展开式的高阶项,并将其等效为满足范数有界的不确定线性矩阵形式。基于传统的EKF估计器框架,并使用一系列引理,逐步推导了误差协方差的上界,同时优化设计了合适的滤波器增益使得这样的上界最小以保证最优的滤波性能。提出的鲁棒EKF是一种递推算法,因此可在线应用,计算简便。最后,同步发电机的二阶和三阶模型作为例子以测试提出的估计方法,仿真结果表明,提出的鲁棒EKF算法的估计精度要优于传统的EKF。 展开更多
关键词 同步发电机 非线性系统 动态状态估计 扩展卡尔曼滤波 鲁棒算法
在线阅读 下载PDF
多策略改进麻雀搜索算法优化无迹卡尔曼滤波方法 被引量:2
17
作者 刘建娟 李志伟 +2 位作者 姬淼鑫 吴豪然 许强伟 《科学技术与工程》 北大核心 2025年第1期227-237,共11页
针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中无迹变换(unscented transform,UT)在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(improved sparrow search algorithm,ISSA)... 针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中无迹变换(unscented transform,UT)在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(improved sparrow search algorithm,ISSA)对UT中采样点分布状态控制参数进行寻优调整的方法,从而优化Sigma点分布以提高非线性近似效果,改善滤波估计性能。同时针对传统麻雀搜索算法面临的易陷入局部最优和收敛速度慢等问题,首先利用Cubic混沌映射改善初始种群的多样性;其次在发现者阶段引入非线性自适应收敛因子,提高平衡算法在全局探索和局部开发方面的能力;同时在追随者阶段利用小波变异策略,以避免追随者盲目追随而导致算法陷入局部最优;最后利用自适应t分布的扰动能力增强算法的全局搜索能力。通过测试函数对ISSA算法进行仿真实验,结果表明ISSA算法具有更好的收敛性和求解精度,同时验证ISSA优化UKF算法后的仿真结果,表明了ISSA-UKF算法相比于UKF算法的位置均方根误差降低了52.2%,速度均方根误差降低了21.9%,证明了改进方法的有效性和可行性。 展开更多
关键词 无迹卡尔曼滤波 麻雀搜索算法 Cubic混沌映射 非线性自适应收敛因子 小波变异策略
在线阅读 下载PDF
基于多尺度加权引导滤波的弱光图像细节增强研究
18
作者 翟书娟 索艳滨 李亚平 《激光杂志》 北大核心 2025年第4期140-145,共6页
图像传感器在捕捉弱光图像时往往会受到各种噪声的干扰,这些噪声不仅降低了弱光图像质量,还增加了弱光图像细节增强的难度。为此,提出了基于多尺度加权引导滤波的细节增强方法。对于弱光图像进行混合灰度变换以及多尺度加权引导滤波,实... 图像传感器在捕捉弱光图像时往往会受到各种噪声的干扰,这些噪声不仅降低了弱光图像质量,还增加了弱光图像细节增强的难度。为此,提出了基于多尺度加权引导滤波的细节增强方法。对于弱光图像进行混合灰度变换以及多尺度加权引导滤波,实现图像噪声去除。在弱光图像噪声去除的基础上,根据弱光图像的亮度分量、平均照射分量、反射分量进行全局非线性亮度校正,实现弱光图像细节增强。实验结果表明,所提方法对弱光图像的引导滤波效果较好,增强后的图像分辨率较高,色彩失真和灰度不均现象不显著,实际应用价值较高。 展开更多
关键词 多尺度加权引导滤波 弱光图像细节增强 像素点均值过滤 反射分量 全局非线性亮度校正
在线阅读 下载PDF
深空探测中考虑乘性噪声影响的自主导航滤波算法设计 被引量:1
19
作者 卢山 张世源 +2 位作者 侯月阳 张晓彤 李晴 《系统工程与电子技术》 北大核心 2025年第1期287-295,共9页
针对深空探测任务中航天器的状态估计问题,考虑到基于光学相机的自主导航系统在建立观测方程时所使用的坐标系转换矩阵含有由星敏感器引入的测量噪声,该噪声与量测状态相互耦合,属于乘性噪声,建立带有乘性噪声的光学自主导航系统模型。... 针对深空探测任务中航天器的状态估计问题,考虑到基于光学相机的自主导航系统在建立观测方程时所使用的坐标系转换矩阵含有由星敏感器引入的测量噪声,该噪声与量测状态相互耦合,属于乘性噪声,建立带有乘性噪声的光学自主导航系统模型。针对系统存在乘性噪声时,仅适用于处理加性噪声的传统滤波器估计误差增大的问题,将乘性噪声矩阵引入高斯滤波算法的递推公式进行推导,并结合混合阶球面单形-径向容积卡尔曼滤波器(mixed-order spherical simplex-radial cubature Kalman filter,MSSRCKF)的数值积分方法,提出混合阶容积-乘性卡尔曼滤波器(mixed-order cubature-multiplicative Kalman filter,MC-MKF)。该滤波器能够对由星敏感器引入观测方程的高斯以及非高斯乘性噪声进行处理,在不增加计算复杂度的情况下提升滤波器的估计精度。最后,将MC-MKF应用于自主导航系统模型,并与MSSRCKF进行比较分析。仿真结果表明,当系统存在乘性噪声时,MC-MKF的估计精度明显优于MSSRCKF,且计算量与MSSRCKF基本一致。 展开更多
关键词 深空探测 光学自主导航 乘性噪声 非线性滤波
在线阅读 下载PDF
基于改进变异萤火虫优化粒子滤波的无人机目标定位 被引量:1
20
作者 闫啸家 朱惠民 +2 位作者 孙世岩 石章松 姜尚 《兵工学报》 北大核心 2025年第5期70-82,共13页
针对无人机光电平台受到严重非线性因素影响,从而导致目标定位精度显著降低的问题,提出一种基于改进变异萤火虫优化粒子滤波(Improved Mutant Firefly Algorithm-Particle Filter, IMFA-PF)算法,用于无人机对地面目标精确定位。首先,建... 针对无人机光电平台受到严重非线性因素影响,从而导致目标定位精度显著降低的问题,提出一种基于改进变异萤火虫优化粒子滤波(Improved Mutant Firefly Algorithm-Particle Filter, IMFA-PF)算法,用于无人机对地面目标精确定位。首先,建立无人机光电平台目标观测的状态方程和测量方程;利用IMFA-PF算法对目标地理位置进行估计,通过引入多重变异策略和弹力机制来改变粒子之间的相互作用模式,解决由严重非线性因素以及过度优化导致的粒子退化问题;通过一维非线性不稳定仿真系统和实测飞行实验验证了该算法的有效性。实验结果表明,所提算法能够改善粒子分布受观测非线性的影响,有效解决粒子退化的问题,与已有算法相比具有更好的鲁棒性和定位精度。 展开更多
关键词 无人机 目标定位 粒子滤波 群智能优化 非线性因素
在线阅读 下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部