A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a ...A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.展开更多
A class of large-scale systems, where the overall objective function is a nonlinear function of performance index of each subsystem, is investigated in this paper. This type of large-scale control problem is non-separ...A class of large-scale systems, where the overall objective function is a nonlinear function of performance index of each subsystem, is investigated in this paper. This type of large-scale control problem is non-separable in the sense of conventional hierarchical control. Hierarchical control is extended in the paper to large-scale non-separable control problems, where multiobjective optimization is used as separation strategy. The large-scale non-separable control problem is embedded, under certain conditions, into a family of the weighted Lagrangian formulation. The weighted Lagrangian formulation is separable with respect to subsystems and can be effectively solved using the interaction balance approach at the two lower levels in the proposed three-level solution structure. At the third level, the weighting vector for the weighted Lagrangian formulation is adjusted iteratively to search the optimal weighting vector with which the optimal of the original large-scale non-separable control problem is obtained. Theoretical base of the algorithm is established. Simulation shows that the algorithm is effective.展开更多
To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally toleran...To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally tolerant to disturbances and sensitive to fault, the robustness and stability properties of the fault diagnosis scheme are established rigorously. Using the residual vector, a fault tolerant controller is established in order to guarantee the stability of the closed-loop system, and the controller law can be obtained by solving a set of linear matrix inequalities. Then, some relevant sufficient conditions for the existence of a solution are given by applying Lyapunov stability theory. Finally, a simulation example is performed to show the effectiveness of the proposed approach.展开更多
Returning to moon has become a top topic recently. Many studies have shown that soft landing is a challenging problem in lunar exploration. The lunar soft landing in this paper begins from a 100 km circular lunar park...Returning to moon has become a top topic recently. Many studies have shown that soft landing is a challenging problem in lunar exploration. The lunar soft landing in this paper begins from a 100 km circular lunar parking orbit. Once the landing area has been selected and it is time to deorbit for landing, a ΔV burn of 19.4 m/s is performed to establish a 100×15 km elliptical orbit. At perilune, the landing jets are ignited, and a propulsive landing is performed. A guidance and control scheme for lunar soft landing is proposed in the paper, which combines optimal theory with nonlinear neuro-control. Basically, an optimal nonlinear control law based on artificial neural network is presented, on the basis of the optimum trajectory from perilune to lunar surface in terms of Pontryagin's maximum principle according to the terminal boundary conditions and performance index. Therefore some optimal control laws can be carried out in the soft landing system due to the nonlinear mapping function of the neural network. The feasibility and validity of the control laws are verified in a simulation experiment.展开更多
First of all, this paper discusses the drawbacks of multilayer perceptron (MLP), which is trained by the traditional back propagation (BP) algorithm and used in a special classification problem. A new training algorit...First of all, this paper discusses the drawbacks of multilayer perceptron (MLP), which is trained by the traditional back propagation (BP) algorithm and used in a special classification problem. A new training algorithm for neural networks based on genetic algorithm and BP algorithm is developed. The difference between the new training algorithm and BP algorithm in the ability of nonlinear approaching is expressed through an example, and the application foreground is illustrated by an example.展开更多
In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and...In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed.展开更多
基金This project was supported by the National Natural Science Foundation of China (90405011).
文摘A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.
文摘A class of large-scale systems, where the overall objective function is a nonlinear function of performance index of each subsystem, is investigated in this paper. This type of large-scale control problem is non-separable in the sense of conventional hierarchical control. Hierarchical control is extended in the paper to large-scale non-separable control problems, where multiobjective optimization is used as separation strategy. The large-scale non-separable control problem is embedded, under certain conditions, into a family of the weighted Lagrangian formulation. The weighted Lagrangian formulation is separable with respect to subsystems and can be effectively solved using the interaction balance approach at the two lower levels in the proposed three-level solution structure. At the third level, the weighting vector for the weighted Lagrangian formulation is adjusted iteratively to search the optimal weighting vector with which the optimal of the original large-scale non-separable control problem is obtained. Theoretical base of the algorithm is established. Simulation shows that the algorithm is effective.
基金supported by the National Natural Science Foundation of China(90816023).
文摘To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally tolerant to disturbances and sensitive to fault, the robustness and stability properties of the fault diagnosis scheme are established rigorously. Using the residual vector, a fault tolerant controller is established in order to guarantee the stability of the closed-loop system, and the controller law can be obtained by solving a set of linear matrix inequalities. Then, some relevant sufficient conditions for the existence of a solution are given by applying Lyapunov stability theory. Finally, a simulation example is performed to show the effectiveness of the proposed approach.
文摘Returning to moon has become a top topic recently. Many studies have shown that soft landing is a challenging problem in lunar exploration. The lunar soft landing in this paper begins from a 100 km circular lunar parking orbit. Once the landing area has been selected and it is time to deorbit for landing, a ΔV burn of 19.4 m/s is performed to establish a 100×15 km elliptical orbit. At perilune, the landing jets are ignited, and a propulsive landing is performed. A guidance and control scheme for lunar soft landing is proposed in the paper, which combines optimal theory with nonlinear neuro-control. Basically, an optimal nonlinear control law based on artificial neural network is presented, on the basis of the optimum trajectory from perilune to lunar surface in terms of Pontryagin's maximum principle according to the terminal boundary conditions and performance index. Therefore some optimal control laws can be carried out in the soft landing system due to the nonlinear mapping function of the neural network. The feasibility and validity of the control laws are verified in a simulation experiment.
基金This project was supported by Guangdong Natural Science Foundation.
文摘First of all, this paper discusses the drawbacks of multilayer perceptron (MLP), which is trained by the traditional back propagation (BP) algorithm and used in a special classification problem. A new training algorithm for neural networks based on genetic algorithm and BP algorithm is developed. The difference between the new training algorithm and BP algorithm in the ability of nonlinear approaching is expressed through an example, and the application foreground is illustrated by an example.
文摘In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed.