传统图像去噪方法在去除声呐图像斑点噪声的同时,难以有效保留细节特征.针对该问题,提出一种基于密度聚类与灰度变换的非下采样剪切波域图像去噪方法.利用非下采样剪切波变换将含噪图像分解为高频系数和低频系数,根据声呐图像中斑点噪...传统图像去噪方法在去除声呐图像斑点噪声的同时,难以有效保留细节特征.针对该问题,提出一种基于密度聚类与灰度变换的非下采样剪切波域图像去噪方法.利用非下采样剪切波变换将含噪图像分解为高频系数和低频系数,根据声呐图像中斑点噪声的分布特性,采用基于密度的噪声应用空间聚类(Density-based Spatial Clustering of Applications with Noise,DBSCAN)算法对高频系数进行处理,分离噪声信号,保留细节信息;对低频系数进行灰度变换,以增强图像对比度.通过非下采样剪切波逆变换对处理后的高频系数和低频系数进行重构,实现图像去噪.实验结果表明,本文方法在改善图像均方误差、峰值信噪比和结构相似度等指标上效果明显,去噪后图像的视觉效果和边缘保持能力得到较大提升.随着噪声方差的逐渐增大,本文方法的优越性得到进一步体现,适用于具有高密度噪声的声呐图像去噪.展开更多
Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to ...Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods.展开更多
文摘传统图像去噪方法在去除声呐图像斑点噪声的同时,难以有效保留细节特征.针对该问题,提出一种基于密度聚类与灰度变换的非下采样剪切波域图像去噪方法.利用非下采样剪切波变换将含噪图像分解为高频系数和低频系数,根据声呐图像中斑点噪声的分布特性,采用基于密度的噪声应用空间聚类(Density-based Spatial Clustering of Applications with Noise,DBSCAN)算法对高频系数进行处理,分离噪声信号,保留细节信息;对低频系数进行灰度变换,以增强图像对比度.通过非下采样剪切波逆变换对处理后的高频系数和低频系数进行重构,实现图像去噪.实验结果表明,本文方法在改善图像均方误差、峰值信噪比和结构相似度等指标上效果明显,去噪后图像的视觉效果和边缘保持能力得到较大提升.随着噪声方差的逐渐增大,本文方法的优越性得到进一步体现,适用于具有高密度噪声的声呐图像去噪.
基金supported by the National Natural Science Foundation of China(6157206361401308)+6 种基金the Fundamental Research Funds for the Central Universities(2016YJS039)the Natural Science Foundation of Hebei Province(F2016201142F2016201187)the Natural Social Foundation of Hebei Province(HB15TQ015)the Science Research Project of Hebei Province(QN2016085ZC2016040)the Natural Science Foundation of Hebei University(2014-303)
文摘Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods.