期刊文献+
共找到45,404篇文章
< 1 2 250 >
每页显示 20 50 100
High dynamic mobile topology-based clustering algorithm for UAV swarm networks
1
作者 CHEN Siji JIANG Bo +2 位作者 XU Hong PANG Tao GAO Mingke 《Journal of Systems Engineering and Electronics》 2025年第4期1103-1112,共10页
Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication lin... Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication links.However,when UAV swarm perform tasks in narrow spaces,they often encounter various spatial obstacles,building shielding materials,and high-speed node movements,which result in intermittent network communication links and cannot support the smooth comple-tion of tasks.In this paper,a high mobility and dynamic topol-ogy of the UAV swarm is particularly considered and the high dynamic mobile topology-based clustering(HDMTC)algorithm is proposed.Simulation and real flight verification results verify that the proposed HDMTC algorithm achieves higher stability of net-work,longer link expiration time(LET),and longer node lifetime,all of which improve the communication performance for UAV swarm networks. 展开更多
关键词 unmanned aerial vehichle(UAV)swarm network UAV clustering MOBILITY virtual tube.
在线阅读 下载PDF
基于HS-Clustering的风电场机组分组功率预测 被引量:4
2
作者 高小力 张智博 +1 位作者 田启明 刘永前 《现代电力》 北大核心 2017年第3期12-18,共7页
为了寻求风电场功率预测精度和计算效率二者的平衡,提出了一种基于霍普金斯统计量与聚类算法(HSClustering)的风电场机组分组功率预测方法,该方法将霍普金斯统计量与聚类算法的优势有效结合,采用霍普金斯统计量确定场内机组分组个数,通... 为了寻求风电场功率预测精度和计算效率二者的平衡,提出了一种基于霍普金斯统计量与聚类算法(HSClustering)的风电场机组分组功率预测方法,该方法将霍普金斯统计量与聚类算法的优势有效结合,采用霍普金斯统计量确定场内机组分组个数,通过聚类算法识别不同机组的相似性将风电场分成不同的机组群,然后对每组机群分别建立功率预测模型,从而叠加得到整场输出功率;另外以实测风速、实测功率及二者组合作为机组分组模型输入,分析其对预测精度的影响程度。实例分析表明基于HSClustering的分组预测方法可以显著提高预测精度,同时保证较高的计算效率;风速是影响分组效果的主要因素,对于某些分组模型,功率又可以作为风速的重要补充。 展开更多
关键词 机组分组个数 功率预测 霍普金斯统计量 聚类算法
在线阅读 下载PDF
The algorithm of decomposing superim-posed 2-D Poisson processes and its applica-tion to the extracting earthquake clustering pattern 被引量:8
3
作者 裴韬 周成虎 +2 位作者 杨明 骆剑承 李全林 《地震学报》 CSCD 北大核心 2004年第1期53-61,共9页
Aiming at the complexity of seismic gestation mechanism and spatial distribution, we hypothesize that the seismic data are composed of background earthquakes and anomaly earthquakes in a certain temporal-spatial scope... Aiming at the complexity of seismic gestation mechanism and spatial distribution, we hypothesize that the seismic data are composed of background earthquakes and anomaly earthquakes in a certain temporal-spatial scope. Also the background earthquakes and anomaly earthquakes both satisfy the 2-D Poisson process of different parameters respectively. In the paper, the concept of N-th order distance is introduced in order to transform 2-D superimposed Poisson process into 1-D mixture density function. On the basis of choosing the distance, mixture density function is decomposed to recognize the anomaly earthquakes through genetic algorithm. Combined with the temporal scanning of C value, the algorithm is applied to the recognition on spatial pattern of foreshock anomalies by exam-ples of Songpan and Longling sequences in the southwest of China. 展开更多
关键词 丛集地震 背景地震 混合泊松过程 遗传算法 混合密度分解
在线阅读 下载PDF
基于Blending-Clustering集成学习的大坝变形预测模型 被引量:1
4
作者 冯子强 李登华 丁勇 《水利水电技术(中英文)》 北大核心 2024年第4期59-70,共12页
【目的】变形是反映大坝结构性态最直观的效应量,构建科学合理的变形预测模型是保障大坝安全健康运行的重要手段。针对传统大坝变形预测模型预测精度低、误报率高等问题导致的错误报警现象,【方法】选取不同预测模型和聚类算法集成,构... 【目的】变形是反映大坝结构性态最直观的效应量,构建科学合理的变形预测模型是保障大坝安全健康运行的重要手段。针对传统大坝变形预测模型预测精度低、误报率高等问题导致的错误报警现象,【方法】选取不同预测模型和聚类算法集成,构建了一种Blending-Clustering集成学习的大坝变形预测模型,该模型以Blending对单一预测模型集成提升预测精度为核心,并通过Clustering聚类优选预测值改善模型稳定性。以新疆某面板堆石坝变形监测数据为实例分析,通过多模型预测性能比较,对所提出模型的预测精度和稳定性进行全面评估。【结果】结果显示:Blending-Clustering模型将预测模型和聚类算法集成,均方根误差(RMSE)和归一化平均百分比误差(nMAPE)明显降低,模型的预测精度得到显著提高;回归相关系数(R~2)得到提升,模型具备更强的拟合能力;在面板堆石坝上22个测点变形数据集上的预测评价指标波动范围更小,模型的泛化性和稳定性得到有效增强。【结论】结果表明:Blending-Clustering集成预测模型对于预测精度、泛化性和稳定性均有明显提升,在实际工程具有一定的应用价值。 展开更多
关键词 大坝 变形 预测模型 Blending集成 clustering集成 模型融合
在线阅读 下载PDF
U-Clustering:基于效用聚类的激励学习算法
5
作者 陈焕文 殷苌茗 谢丽娟 《计算机工程与应用》 CSCD 北大核心 2005年第26期37-42,74,共7页
提出了一个新的效用聚类激励学习算法U-Clustering。该算法完全不用像U-Tree算法那样进行边缘节点的生成和测试,它首先根据实例链的观测动作值对实例进行聚类,然后对每个聚类进行特征选择,最后再进行特征压缩,经过压缩后的新特征就成为... 提出了一个新的效用聚类激励学习算法U-Clustering。该算法完全不用像U-Tree算法那样进行边缘节点的生成和测试,它首先根据实例链的观测动作值对实例进行聚类,然后对每个聚类进行特征选择,最后再进行特征压缩,经过压缩后的新特征就成为新的状态空间树节点。通过对NewYorkDriving[2,13]的仿真和算法的实验分析,表明U-Clustering算法对解决大型部分可观测环境问题是比较有效的算法。 展开更多
关键词 激励学习 效用聚类 部分可观测Markov决策过程
在线阅读 下载PDF
Cu cluster@UiO-66团簇负载型催化剂促进光催化CO_(2)加氢反应 被引量:2
6
作者 王秀林 岐少鹏 +6 位作者 周昆 邓希 姚辉超 戴若云 张雨晴 伍思达 聂锁府 《分子催化(中英文)》 北大核心 2025年第2期111-119,I0001,共10页
针对高活性Cu基团簇(Cu cluster)催化剂的稳定性问题,利用MOFs材料独特的结构限域作用,将Cu团簇锚定在UiO-66中,构建了Cu cluster@UiO-66复合材料,改善了催化剂的稳定性和催化活性.在该复合结构中,UiO-66不仅可作为吸光单元捕获太阳光... 针对高活性Cu基团簇(Cu cluster)催化剂的稳定性问题,利用MOFs材料独特的结构限域作用,将Cu团簇锚定在UiO-66中,构建了Cu cluster@UiO-66复合材料,改善了催化剂的稳定性和催化活性.在该复合结构中,UiO-66不仅可作为吸光单元捕获太阳光形成光生载流子,而且UiO-66的多孔结构可以有效稳定Cu团簇,保证其微观尺度上的高度分散和结构稳定.研究发现,在光催化反应过程中,UiO-66的光生电子可快速转移至Cu团簇,进而以Cu团簇作为催化活性位点驱动CO_(2)还原反应.得益于复合材料中高效的电荷转移和稳定的团簇活性位点结构,光催化CO_(2)加氢反应活性明显增强.本研究为合成MOFs负载型团簇材料提供了新的思路. 展开更多
关键词 复合结构 UiO-66 铜纳米簇 光催化CO_(2)还原
在线阅读 下载PDF
Construction mechanism of whitenization weight function and its application in grey clustering evaluation 被引量:7
7
作者 XIE Naiming SU Bentao CHEN Nanlei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第1期121-131,共11页
The clustering evaluation can be used to scientifically classify the objects to be evaluated according to the information aggregation of various evaluation rules. In grey weighted clustering evaluation, the index clus... The clustering evaluation can be used to scientifically classify the objects to be evaluated according to the information aggregation of various evaluation rules. In grey weighted clustering evaluation, the index clustering rule relies on the construction of the whitenization weight function, while the existing construction method of the linear function lacks the construction mechanism analysis and validity explanation. A normative construction principle is put forward by analyzing the construction mechanism of the function. Through proving the normative principle of the function,the basic modal function(BMF) is proposed and characterized by different function forms. Then, a new type of the whitenization weight function and its grey clustering evaluation model algorithm are given by studying the mechanism and nature of the construction of different forms of the function. Finally, the comparative study for self-innovation capability of defense science and technology industry(DSTI) is taken as an example. The results show that the different construction ways of the function have an effect on the clustering result. The proposed construction mechanism can better explain the index clustering rules and evaluation effectiveness,which will perfect the theoretical system of grey clustering evaluation and be applied to practice effectively. 展开更多
关键词 whitenization WEIGHT FUNCTION GREY system THEORY GREY clustering evaluation.
在线阅读 下载PDF
Deceptive jamming suppression in multistatic radar based on coherent clustering 被引量:14
8
作者 ABDALLA Ahmed AHMED Mohaned Giess Shokrallah +2 位作者 ZHAO Yuan XIONG Ying TANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期269-277,共9页
This paper proposes a suppression method of the deceptive false target(FT) produced by digital radio frequency memory(DRFM) in a multistatic radar system. The simulated deceptive false targets from DRFM cannot be easi... This paper proposes a suppression method of the deceptive false target(FT) produced by digital radio frequency memory(DRFM) in a multistatic radar system. The simulated deceptive false targets from DRFM cannot be easily discriminated and suppressed with traditional radar systems. Therefore, multistatic radar has attracted considerable interest as it provides improved performance against deception jamming due to several separated receivers. This paper first investigates the received signal model in the presence of multiple false targets in all receivers of the multistatic radar. Then, obtain the propagation time delays of the false targets based on the cross-correlation test of the received signals in different receivers. In doing so, local-density-based spatial clustering of applications with noise(LDBSCAN) is proposed to discriminate the FTs from the physical targets(PTs) after compensating the FTs time delays, where the FTs are approximately coincident with one position, while PTs possess small dispersion.Numerical simulations are carried out to demonstrate the feasibility and validness of the proposed method. 展开更多
关键词 multistatic radar clustering analysis electronic counter-countermeasure(ECCM) deceptive jamming
在线阅读 下载PDF
Intuitionistic fuzzy C-means clustering algorithms 被引量:22
9
作者 Zeshui Xu Junjie Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期580-590,共11页
Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-me... Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-means method the seeds are modified,and for each IFS a membership degree to each of the clusters is estimated.In the end of the algorithm,all the given IFSs are clustered according to the estimated membership degrees.Furthermore,the algorithm is extended for clustering interval-valued intuitionistic fuzzy sets(IVIFSs).Finally,the developed algorithms are illustrated through conducting experiments on both the real-world and simulated data sets. 展开更多
关键词 intuitionistic fuzzy set(IFS) intuitionistic fuzzy Cmeans algorithm clustering interval-valued intuitionistic fuzzy set(IVIFS).
在线阅读 下载PDF
Improved insensitive to input parameters trajectory clustering algorithm 被引量:3
10
作者 Jiashun Chen Dechang Pi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期852-861,共10页
The existing trajectory clustering (TRACLUS) is sensitive to the input parameters c and MinLns. The parameter value is changed a little, but cluster results are entirely different. Aiming at this vulnerability, a sh... The existing trajectory clustering (TRACLUS) is sensitive to the input parameters c and MinLns. The parameter value is changed a little, but cluster results are entirely different. Aiming at this vulnerability, a shielding parameters sensitivity trajectory cluster (SPSTC) algorithm is proposed which is insensitive to the input parameters. Firstly, some definitions about the core distance and reachable distance of line segment are presented, and then the algorithm generates cluster sorting according to the core dis- tance and reachable distance. Secondly, the reachable plots of line segment sets are constructed according to the cluster sorting and reachable distance. Thirdly, a parameterized sequence is extracted according to the reachable plot, and then the final trajectory cluster based on the parameterized sequence is acquired. The parameterized sequence represents the inner cluster structure of trajectory data. Experiments on real data sets and test data sets show that the SPSTC algorithm effectively reduces the sensitivity to the input parameters, meanwhile it can obtain the better quality of the trajectory cluster. 展开更多
关键词 clustering TRAJECTORY sensitivity input parameter.
在线阅读 下载PDF
Clustering routing algorithm of wireless sensor networks based on Bayesian game 被引量:9
11
作者 Gengzhong Zheng Sanyang Liu Xiaogang Qi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期154-159,共6页
To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomple... To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomplete information to the static game of complete but imperfect information. In addition, the existence of Bayesian nash equilibrium is proved. A clustering routing algorithm is also designed according to the proposed model, both cluster head distribution and residual energy are considered in the design of the algorithm. Simulation results show that the algorithm can balance network load, save energy and prolong network lifetime effectively. 展开更多
关键词 wireless sensor networks (WSNs) clustering routing Bayesian game energy efficiency.
在线阅读 下载PDF
Improved method for the feature extraction of laser scanner using genetic clustering 被引量:6
12
作者 Yu Jinxia Cai Zixing Duan Zhuohua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期280-285,共6页
Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method b... Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method based on genetic clustering VGA-clustering is presented. By integrating the spatial neighbouring information of range data into fuzzy clustering algorithm, a weighted fuzzy clustering algorithm (WFCA) instead of standard clustering algorithm is introduced to realize feature extraction of laser scanner. Aimed at the unknown clustering number in advance, several validation index functions are used to estimate the validity of different clustering algorithms and one validation index is selected as the fitness function of genetic algorithm so as to determine the accurate clustering number automatically. At the same time, an improved genetic algorithm IVGA on the basis of VGA is proposed to solve the local optimum of clustering algorithm, which is implemented by increasing the population diversity and improving the genetic operators of elitist rule to enhance the local search capacity and to quicken the convergence speed. By the comparison with other algorithms, the effectiveness of the algorithm introduced is demonstrated. 展开更多
关键词 laser scanner feature extraction weighted fuzzy clustering validation index genetic algorithm.
在线阅读 下载PDF
Clustering algorithm based on density function and nichePSO 被引量:4
13
作者 Chonghui Guo Yunhui Zang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期445-452,共8页
This paper introduces niching particle swarm optimiza- tion (nichePSO) into clustering analysis and puts forward a cluster- ing algorithm which uses nichePSO to optimize density functions. Firstly, this paper improv... This paper introduces niching particle swarm optimiza- tion (nichePSO) into clustering analysis and puts forward a cluster- ing algorithm which uses nichePSO to optimize density functions. Firstly, this paper improves main swarm training models and in- creases their ability of space searching. Secondly, the radius of sub-swarms is defined adaptively according to the actual clus- tering problem, which can be useful for the niches' forming and searching. At last, a novel method that distributes samples to the corresponding cluster is proposed. Numerical results illustrate that this algorithm based on the density function and nichePSO could cluster unbalanced density datasets into the correct clusters auto- matically and accurately. 展开更多
关键词 niching particle swarm optimization (nichePSO) density-based clustering automatic clustering.
在线阅读 下载PDF
An Application of Grey Clustering Method in the Sporting Clothing Style Evaluation 被引量:4
14
作者 Chen Zhixiang School of Management, Zhongshan University, Guangzhou 510275, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第2期19-22,共4页
In this paper, a Grey clustering method is applied to the evaluation research of sporting clothing style, the result shows that the methods proposed in the paper is feasible and effective.
关键词 Grey clustering Sporting clothing STYLE Multi-criterion evaluation.
在线阅读 下载PDF
Blind source separation by weighted K-means clustering 被引量:5
15
作者 Yi Qingming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期882-887,共6页
Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not ... Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not satisfactory. The contribution of the vector x(t) with different modules is theoretically proved to be unequal, and a weighted K-means clustering method is proposed on this grounds. The proposed algorithm is not only as fast as the conventional K-means clustering method, but can also achieve considerably accurate results, which is demonstrated by numerical experiments. 展开更多
关键词 blind source separation underdetermined mixing sparse representation weighted K-means clustering.
在线阅读 下载PDF
Self Organization Map for Clustering and Classification in the Ecology of Agent Organizations 被引量:3
16
作者 Dimuthu Chandana Kelegama LIU Li-hua LIU Jian-qin 《Journal of Central South University》 SCIE EI CAS 2000年第1期53-56,共4页
Development of computational agent organizations or “societies” has become the domiant computing paradigm in the arena of Distributed Artificial Intelligence, and many foreseeable future applications need agent orga... Development of computational agent organizations or “societies” has become the domiant computing paradigm in the arena of Distributed Artificial Intelligence, and many foreseeable future applications need agent organizations, in which diversified agents cooperate in a distributed manner, forming teams. In such scenarios, the agents would need to know each other in order to facilitate the interactions. Moreover, agents in such an environment are not statically defined in advance but they can adaptively enter and leave an organization. This begs the question of how agents locate each other in order to cooperate in achieving organizational goals. Locating agents is a quite challenging task, especially in organizations that involve a large number of agents and where the resource avaiability is intermittent. The authors explore here an approach based on self organization map (SOM) which will serve as a clustering method in the light of the knowledge gathered about various agents. The approach begins by categorizing agents using a selected set of agent properties. These categories are used to derive various ranks and a distance matrix. The SOM algorithm uses this matrix as input to obtain clusters of agents. These clusters reduce the search space, resulting in a relatively short agent search time. 展开更多
关键词 clustering classification AGENT organizations AGENT societies self ORGANIZING distributed COMPUTING
在线阅读 下载PDF
Kernel method-based fuzzy clustering algorithm 被引量:2
17
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy C-means clustering.
在线阅读 下载PDF
Intuitionistic fuzzy hierarchical clustering algorithms 被引量:6
18
作者 Xu Zeshui1,2 1. Coll. of Economics and Management, Southeast Univ., Nanjing 210096, P. R. China 2. Inst. of Sciences, PLA Univ. of Science and Technology, Nanjing 210007, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期90-97,共8页
Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a membership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set... Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a membership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set (IVIFS), whose components are intervals rather than exact numbers. IFSs and IVIFSs have been found to be very useful to describe vagueness and uncertainty. However, it seems that little attention has been focused on the clustering analysis of IFSs and IVIFSs. An intuitionistic fuzzy hierarchical algorithm is introduced for clustering IFSs, which is based on the traditional hierarchical clustering procedure, the intuitionistic fuzzy aggregation operator, and the basic distance measures between IFSs: the Hamming distance, normalized Hamming, weighted Hamming, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance. Subsequently, the algorithm is extended for clustering IVIFSs. Finally the algorithm and its extended form are applied to the classifications of building materials and enterprises respectively. 展开更多
关键词 intuitionistic fuzzy set interval-valued intuitionistic fuzzy set hierarchical clustering intuitionisticfuzzy aggregation operator distance measure.
在线阅读 下载PDF
Method of neural network modulation recognition based on clustering and Polak-Ribiere algorithm 被引量:4
19
作者 Faquan Yang Zan Li +2 位作者 Hongyan Li Haiyan Huang Zhongxian Pan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期742-747,共6页
To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is ... To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is extracted by using a clustering algorithm, the neural network is trained by using the algorithm of variable gradient correction (Polak-Ribiere) so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram. Simulation results show that the recognition rate based on this algorithm is enhanced over 30% compared with the methods that adopt clustering algorithm or neural network based on the back propagation algorithm alone under the low SNR. The recognition rate can reach 90% when the SNR is 4 dB, and the method is easy to be achieved so that it has a broad application prospect in the modulating recognition. 展开更多
关键词 clustering algorithm feature extraction algorithm of Polak-Ribiere neural network (NN) modulation recognition.
在线阅读 下载PDF
Fast density peak-based clustering algorithm for multiple extended target tracking 被引量:4
20
作者 SHEN Xinglin SONG Zhiyong +1 位作者 FAN Hongqi FU Qiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期435-447,共13页
The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influen... The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influence for the tracking results of different partitions is analyzed, and the form of the most informative partition is obtained. Then, a fast density peak-based clustering (FDPC) partitioning algorithm is applied to the measurement set partitioning. Since only one partition of the measurement set is used, the ET-PHD filter based on FDPC partitioning has lower computational complexity than the other ET-PHD filters. As FDPC partitioning is able to remove the spatially close clutter-generated measurements, the ET-PHD filter based on FDPC partitioning has good tracking performance in the scenario with more clutter-generated measurements. The simulation results show that the proposed algorithm can get the most informative partition and obviously reduce computational burden without losing tracking performance. As the number of clutter-generated measurements increased, the ET-PHD filter based on FDPC partitioning has better tracking performance than other ET-PHD filters. The FDPC algorithm will play an important role in the engineering realization of the multiple extended target tracking filter. 展开更多
关键词 FAST DENSITY peak-based clustering (FDPC) MULTIPLE extended target partition probability hypothesis DENSITY (PHD) filter track.
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部