随着工业物联网(industrial Internet of things,IIoT)的不断发展,越来越多的设备和传感器开始连接到网络中,产生了大量的时间序列数据(简称“时序数据”),时序数据爆炸式的增长给数据库管理系统带来了新的挑战:持续高吞吐量数据摄取、...随着工业物联网(industrial Internet of things,IIoT)的不断发展,越来越多的设备和传感器开始连接到网络中,产生了大量的时间序列数据(简称“时序数据”),时序数据爆炸式的增长给数据库管理系统带来了新的挑战:持续高吞吐量数据摄取、低延迟多维度数据查询、高性能时间序列索引以及低成本数据存储.近年来时序数据库技术已经成为一个研究热点,一些学者对时序数据库技术进行了深入的研究,同时出现了一些专门用于管理时序数据的时序数据库,并且已经被应用在多个领域,成为工业物联网中不可缺少的关键组成.现有的时序数据库相关综述侧重于时序数据库的功能和性能比较,以及在特定领域中对时序数据库的选择建议,缺少对时序数据库持久化存储、查询、计算和索引等关键技术的研究,同时这些综述工作出现的时间较早,缺少对现代时序数据库关键技术的研究.对学术界时序数据存储研究和工业界时序数据库进行了全面的调查和研究,凝练了时序数据库的4类关键技术:1)时间序列索引优化技术;2)内存数据组织技术;3)高吞吐量数据摄取和低延迟数据查询技术;4)海量历史数据低成本存储技术.同时分析总结了时序数据库评测基准.最后,展望了时序数据库关键技术在未来的发展方向.展开更多
提出了一种存储方法 ,首先把 XML 文档映射为泛关系模式 ,再利用算法 Derive FDs推导出 XML 键所蕴含的泛关系模式上函数依赖集的规范覆盖 ,根据此规范覆盖 ,最后将泛关系模式保持函数依赖地分解为 3NF模式集 .得到了保持 XML 键约束的...提出了一种存储方法 ,首先把 XML 文档映射为泛关系模式 ,再利用算法 Derive FDs推导出 XML 键所蕴含的泛关系模式上函数依赖集的规范覆盖 ,根据此规范覆盖 ,最后将泛关系模式保持函数依赖地分解为 3NF模式集 .得到了保持 XML 键约束的规范化存储模式 ,实现了 XML 文档在关系数据库中的规范化存储 .展开更多
文摘随着工业物联网(industrial Internet of things,IIoT)的不断发展,越来越多的设备和传感器开始连接到网络中,产生了大量的时间序列数据(简称“时序数据”),时序数据爆炸式的增长给数据库管理系统带来了新的挑战:持续高吞吐量数据摄取、低延迟多维度数据查询、高性能时间序列索引以及低成本数据存储.近年来时序数据库技术已经成为一个研究热点,一些学者对时序数据库技术进行了深入的研究,同时出现了一些专门用于管理时序数据的时序数据库,并且已经被应用在多个领域,成为工业物联网中不可缺少的关键组成.现有的时序数据库相关综述侧重于时序数据库的功能和性能比较,以及在特定领域中对时序数据库的选择建议,缺少对时序数据库持久化存储、查询、计算和索引等关键技术的研究,同时这些综述工作出现的时间较早,缺少对现代时序数据库关键技术的研究.对学术界时序数据存储研究和工业界时序数据库进行了全面的调查和研究,凝练了时序数据库的4类关键技术:1)时间序列索引优化技术;2)内存数据组织技术;3)高吞吐量数据摄取和低延迟数据查询技术;4)海量历史数据低成本存储技术.同时分析总结了时序数据库评测基准.最后,展望了时序数据库关键技术在未来的发展方向.
文摘提出了一种存储方法 ,首先把 XML 文档映射为泛关系模式 ,再利用算法 Derive FDs推导出 XML 键所蕴含的泛关系模式上函数依赖集的规范覆盖 ,根据此规范覆盖 ,最后将泛关系模式保持函数依赖地分解为 3NF模式集 .得到了保持 XML 键约束的规范化存储模式 ,实现了 XML 文档在关系数据库中的规范化存储 .