Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at...Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at the global scale required for underwater navigation.At present,there are still research gaps for GNSS-R altimetry under this mode,and its altimetric capability cannot be specifically assessed.Therefore,GNSS-R satellite constellations that meet the global altimetry needs to be designed.Meanwhile,the matching precision prediction model needs to be established to quantitatively predict the GNSS-R constellation altimetric capability.Firstly,the GNSS-R constellations altimetric precision under different configuration parameters is calculated,and the mechanism of the influence of orbital altitude,orbital inclination,number of satellites and simulation period on the precision is analyzed,and a new multilayer feedforward neural network weighted joint prediction model is established.Secondly,the fit of the prediction model is verified and the performance capability of the model is tested by calculating the R2 value of the model as 0.9972 and the root mean square error(RMSE)as 0.0022,which indicates that the prediction capability of the model is excellent.Finally,using the novel multilayer feedforward neural network weighted joint prediction model,and considering the research results and realistic costs,it is proposed that when the constellation is set to an orbital altitude of 500 km,orbital inclination of 75and the number of satellites is 6,the altimetry precision can reach 0.0732 m within one year simulation period,which can meet the requirements of underwater navigation precision,and thus can provide a reference basis for subsequent research on spaceborne GNSS-R sea surface altimetry.展开更多
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri...Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.展开更多
General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neu...General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme.展开更多
The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response syst...The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method.展开更多
A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation ...A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.展开更多
A soft-measuring approach is presented to measure the flux of liquid zinc with high temperature andcausticity. By constructing mathematical model based on neural networks, weighing the mass of liquid zinc, the fluxof ...A soft-measuring approach is presented to measure the flux of liquid zinc with high temperature andcausticity. By constructing mathematical model based on neural networks, weighing the mass of liquid zinc, the fluxof liquid zinc is acquired indirectly, the measuring on line and flux control are realized. Simulation results and indus-trial practice demonstrate that the relative error between the estimated flux value and practical measured flux value islower than 1.5%, meeting the need of industrial process.展开更多
阿尔茨海默病(Alzheimer’s Disease,AD)是一种慢性神经系统退行性疾病,其准确分类有助于实现AD的早期诊断,从而及时采取针对性的治疗和干预措施.本文提出了一种最近邻域聚合图神经网络(Graph neural network with nearest Neighborhood...阿尔茨海默病(Alzheimer’s Disease,AD)是一种慢性神经系统退行性疾病,其准确分类有助于实现AD的早期诊断,从而及时采取针对性的治疗和干预措施.本文提出了一种最近邻域聚合图神经网络(Graph neural network with nearest Neighborhood AgGrEgation,GraphNAGE)的AD分类新方法.首先进行图数据建模,将AD数据样本表示为图数据.采用基于互信息(Mutual Information,MI)的特征选择方法,从样本的114维大脑皮层与皮层下感兴趣区域(Cerebral Cortex and Subcortical Regions Of Interest,CCS-ROI)的体积特征中选取重要性高的体积特征,并将其用于节点建模.提出基于相似性度量的关系建模方法,利用重要性高的体积特征、遗传基因、人口统计信息和认知评分对样本之间的关系进行建模.进而构建GraphNAGE,针对每个节点,基于与该节点相关的边的权重进行最近邻域采样,然后使用均值聚合方法对采样得到的邻居节点和中心节点的数据进行聚合,最后通过一个全连接层和一个Softmax层实现AD分类.在TADPOLE(The Alzheimer’s Disease Prediction Of Longitudinal Evolution)数据集上进行实验,结果表明:本文提出的AD分类方法的准确率(ACCuracy,ACC)为98.20%,F_(1)分数为97.34%,曲线下面积(Area Under Curve,AUC)为97.80%.实验结果表明:本文提出的AD分类方法充分利用了AD数据样本之间的相关性,其性能优于传统的基于机器学习、深度学习和图神经网络(Graph Neural Network,GNN)的AD分类方法.展开更多
基金the National Natural Science Foundation of China under Grant(42274119)the Liaoning Revitalization Talents Program under Grant(XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at the global scale required for underwater navigation.At present,there are still research gaps for GNSS-R altimetry under this mode,and its altimetric capability cannot be specifically assessed.Therefore,GNSS-R satellite constellations that meet the global altimetry needs to be designed.Meanwhile,the matching precision prediction model needs to be established to quantitatively predict the GNSS-R constellation altimetric capability.Firstly,the GNSS-R constellations altimetric precision under different configuration parameters is calculated,and the mechanism of the influence of orbital altitude,orbital inclination,number of satellites and simulation period on the precision is analyzed,and a new multilayer feedforward neural network weighted joint prediction model is established.Secondly,the fit of the prediction model is verified and the performance capability of the model is tested by calculating the R2 value of the model as 0.9972 and the root mean square error(RMSE)as 0.0022,which indicates that the prediction capability of the model is excellent.Finally,using the novel multilayer feedforward neural network weighted joint prediction model,and considering the research results and realistic costs,it is proposed that when the constellation is set to an orbital altitude of 500 km,orbital inclination of 75and the number of satellites is 6,the altimetry precision can reach 0.0732 m within one year simulation period,which can meet the requirements of underwater navigation precision,and thus can provide a reference basis for subsequent research on spaceborne GNSS-R sea surface altimetry.
基金Project(51205299)supported by the National Natural Science Foundation of ChinaProject(2015M582643)supported by the China Postdoctoral Science Foundation+2 种基金Project(2014BAA008)supported by the Science and Technology Support Program of Hubei Province,ChinaProject(2014-IV-144)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2012AAA07-01)supported by the Major Science and Technology Achievements Transformation&Industrialization Program of Hubei Province,China
文摘Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.
基金Tianjin Natural Science Foundation !983602011National 863/CIMS Research Foundation !863-511-945-010
文摘General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme.
基金This project was supported in part by the Science Foundation of Shanxi Province (2003F028)China Postdoctoral Science Foundation (20060390318).
文摘The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method.
基金This project was supported by the National Natural Science Foundation (No. 69875010).
文摘A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.
基金Project (201AA411040) supported by National Plan and Development Committee.
文摘A soft-measuring approach is presented to measure the flux of liquid zinc with high temperature andcausticity. By constructing mathematical model based on neural networks, weighing the mass of liquid zinc, the fluxof liquid zinc is acquired indirectly, the measuring on line and flux control are realized. Simulation results and indus-trial practice demonstrate that the relative error between the estimated flux value and practical measured flux value islower than 1.5%, meeting the need of industrial process.
文摘阿尔茨海默病(Alzheimer’s Disease,AD)是一种慢性神经系统退行性疾病,其准确分类有助于实现AD的早期诊断,从而及时采取针对性的治疗和干预措施.本文提出了一种最近邻域聚合图神经网络(Graph neural network with nearest Neighborhood AgGrEgation,GraphNAGE)的AD分类新方法.首先进行图数据建模,将AD数据样本表示为图数据.采用基于互信息(Mutual Information,MI)的特征选择方法,从样本的114维大脑皮层与皮层下感兴趣区域(Cerebral Cortex and Subcortical Regions Of Interest,CCS-ROI)的体积特征中选取重要性高的体积特征,并将其用于节点建模.提出基于相似性度量的关系建模方法,利用重要性高的体积特征、遗传基因、人口统计信息和认知评分对样本之间的关系进行建模.进而构建GraphNAGE,针对每个节点,基于与该节点相关的边的权重进行最近邻域采样,然后使用均值聚合方法对采样得到的邻居节点和中心节点的数据进行聚合,最后通过一个全连接层和一个Softmax层实现AD分类.在TADPOLE(The Alzheimer’s Disease Prediction Of Longitudinal Evolution)数据集上进行实验,结果表明:本文提出的AD分类方法的准确率(ACCuracy,ACC)为98.20%,F_(1)分数为97.34%,曲线下面积(Area Under Curve,AUC)为97.80%.实验结果表明:本文提出的AD分类方法充分利用了AD数据样本之间的相关性,其性能优于传统的基于机器学习、深度学习和图神经网络(Graph Neural Network,GNN)的AD分类方法.