It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly eval...It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.展开更多
In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of ind...In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process.展开更多
A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooper...A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooperation, the proposed decentralized position/force control scheme can be applied to series constrained reconfigurable manipulators. By multiplying each row of Jacobian matrix in the dynamics by contact force vector, the converted joint torque is obtained. Furthermore, using desired information of other joints instead of their actual values, the dynamics can be represented as a set of interconnected subsystems by model decomposition technique. An adaptive neural network controller is introduced to approximate the unknown dynamics of subsystem. The interconnection and the whole error term are removed by employing an adaptive sliding mode term. And then, the Lyapunov stability theory guarantees the stability of the closed-loop system. Finally, two reconfigurable manipulators with different configurations are employed to show the effectiveness of the proposed decentralized position/force control scheme.展开更多
This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regio...This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regions, allowing more processing is reserved only for these regions. The speed of object segmentation is significantly improved by the region proposal method.By the combination of the region proposal method based on the convolutional neural network and superpixel method, the category and location information can be used to segment objects and image redundancy is significantly reduced. The processing time is reduced considerably by this to achieve the real time. Experiments show that the proposed method can segment the interested target object in real time on an ordinary laptop.展开更多
An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learnin...An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function.展开更多
Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, networ...Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, network reliability and the network loss are the main objective of transmission network planning. Combined with set pair analysis (SPA), particle swarm optimization (PSO), neural network (NN), a hybrid particle swarm optimization model was established with neural network and set pair analysis for transmission network planning (HPNS). Firstly, the contact degree of set pair analysis was introduced, the traditional goal set was converted into the collection of the three indicators including the identity degree, difference agree and contrary degree. On this bases, using shi(H), the three objective optimization problem was converted into single objective optimization problem. Secondly, using the fast and efficient search capabilities of PSO, the transmission network planning model based on set pair analysis was optimized. In the process of optimization, by improving the BP neural network constantly training so that the value of the fitness function of PSO becomes smaller in order to obtain the optimization program fitting the three objectives better. Finally, compared HPNS with PSO algorithm and the classic genetic algorithm, HPNS increased about 23% efficiency than THA, raised about 3.7% than PSO and improved about 2.96% than GA.展开更多
This paper proposes an optimization algorithm based on a multi-loop control system with a neural network controller,in which the objective function that is used is the control plant of each sub-control system.To obtai...This paper proposes an optimization algorithm based on a multi-loop control system with a neural network controller,in which the objective function that is used is the control plant of each sub-control system.To obtain the global optimization solution from a control plant that has many local minimum points,a transformation function is presented.On the one hand,this approach changes a complex objective function into a simple function under the condition of an unchanged globally optimal solution,to find the global optimization solution more easily by using a multi-loop control system.On the other hand,a special neural network(in which the node function can be simply positioned locally)that is composed of multiple transformation functions is used as the controller,which reduces the possibility of falling into local minimum points.At the same time,a filled function is presented as a control law;it can jump out of a local minimum point and move to another local minimum point that has a smaller value of the objective function.Finally,18 simulation examples are provided to show the effectiveness of the proposed method.展开更多
A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is...A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is composed of input, phase rotation, aggregation, reversal rotation and output. In this model, the input is described by qubits, and the output is given by the probability of the state in which (1) is observed. The phase rotation and the reversal rotation are performed by the universal quantum gates. Secondly, the quantum BP neural networks model is constructed, in which the output layer and the hide layer are quantum neurons. With the application of the gradient descent algorithm, a learning algorithm of the model is proposed, and the continuity of the model is proved. It is shown that this model and algorithm are superior to the conventional BP networks in three aspects: convergence speed, convergence rate and robustness, by two application examples of pattern recognition and function approximation.展开更多
Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network...Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network.展开更多
Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a ta...Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model.展开更多
For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with i...For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with information sharing strategy and velocity disturbance operator,is proposed.In improved PSO algorithm,an information sharing strategy is used to avoid the premature convergence as much as possible;the velocity disturbance operator is adopted to jump out of this position once falling into the premature convergence.Simulations on lateral and longitudinal aerodynamic modeling for ATTAS (advanced technologies testing aircraft system) indicate that the proposed method can achieve the accuracy improvement of an order of magnitude compared with SPSO-WNN,and can converge to a satisfactory precision by only 60 120 iterations in contrast to SPSO-WNN with 6 times precocities in 200 times repetitive experiments using Morlet and Mexican hat wavelet functions.Furthermore,it is proved that the proposed method is feasible and effective for aerodynamic modeling from flight data.展开更多
An optimal design approach of high order FIR digital filter is developed based on the algorithm of neural networks with cosine basis function . The main idea is to minimize the sum of the square errors between the amp...An optimal design approach of high order FIR digital filter is developed based on the algorithm of neural networks with cosine basis function . The main idea is to minimize the sum of the square errors between the amplitude response of the desired FIR filter and that of the designed by training the weights of neural networks, then obtains the impulse response of FIR digital filter . The convergence theorem of the neural networks algorithm is presented and proved, and the optimal design method is introduced by designing four kinds of FIR digital filters , i.e., low-pass, high-pass, bandpass , and band-stop FIR digital filter. The results of the amplitude responses show that attenuation in stop-bands is more than 60 dB with no ripple and pulse existing in pass-bands, and cutoff frequency of passband and stop-band is easily controlled precisely .The presented optimal design approach of high order FIR digital filter is significantly effective.展开更多
Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the dat...Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the data of power demand from the year 1980 to 2005 in China, a nonlinear network model was obtained on the relationship between power demand and the factors which had impacts on it, and thus the above proposed method was verified. Meanwhile, the results were compared to those of neural network optimized by genetic algorithm. The results show that this method is superior to neural network optimized by genetic algorithm and is one of the effective ways of time series forecast.展开更多
A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation ...A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.展开更多
0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. The...0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. Then, the 0-1 optimization problems are solved by a neural network model with transient chaotic dynamics (TCNN). Numerical simulations of two typical 0-1 optimization problems show that TCNN can overcome HNN's main drawbacks that it suffers from the local minimum and can search for the global optimal solutions in to solveing 0-1 optimization problems.展开更多
The automatic control of cleaning need to be based on the total amount of manure in the house. Therefore, this article established a prediction model for the total amount of manure in a pig house and took the number o...The automatic control of cleaning need to be based on the total amount of manure in the house. Therefore, this article established a prediction model for the total amount of manure in a pig house and took the number of pigs in the house, age, feed intake,feeding time, the time when the ammonia concentration increased the fastest and the daily fixed cleaning time as variable factors for modelling, so that the model could obtain the current manure output according to the real-time input of time. A Backpropagation(BP) neural network was used for training. The cross-validation method was used to select the best hyperparameters, and the genetic algorithm(GA), particle swarm optimization(PSO) algorithm and mind evolutionary algorithm(MEA) were selected to optimize the initial network weights. The results showed that the model could predict the amount of manure in real-time according to the model input. After the cross-validation method determined the hyperparameters, the GA, PSO and MEA were used to optimize the manure prediction model. The GA had the best average performance.展开更多
We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use mul...We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use multilayer feed forward neural network with GA can finish automatic identification of tomato maturation. The results of experiment showed that the accuracy was up to 94%.展开更多
This paper describes a modified speed-sensorless control for induction motor (IM) based on space vector pulse width modulation and neural network. An Elman ANN method to identify the IM speed is proposed, with IM para...This paper describes a modified speed-sensorless control for induction motor (IM) based on space vector pulse width modulation and neural network. An Elman ANN method to identify the IM speed is proposed, with IM parameters employed as associated elements. The BP algorithm is used to provide an adaptive estimation of the motor speed. The effectiveness of the proposed method is verified by simulation results. The implementation on TMS320F240 fixed DSP is provided.展开更多
Though traditional methods could recognize some facies, e.g. lagoon facies, backshoal facies and foreshoal facies, they couldn't recognize reef facies and shoal facies well. To solve this problem, back propagation...Though traditional methods could recognize some facies, e.g. lagoon facies, backshoal facies and foreshoal facies, they couldn't recognize reef facies and shoal facies well. To solve this problem, back propagation neural network(BP-ANN) and an improved BP-ANN with better stability and suitability, optimized by a particle swarm optimizer(PSO) algorithm(PSO-BP-ANN) were proposed to solve the microfacies' auto discrimination of M formation from the R oil field in Iraq. Fourteen wells with complete core, borehole and log data were chosen as the standard wells and 120 microfacies samples were inferred from these 14 wells. Besides, the average value of gamma, neutron and density logs as well as the sum of squares of deviations of gamma were extracted as key parameters to build log facies(facies from log measurements)-microfacies transforming model. The total 120 log facies samples were divided into 12 kinds of log facies and 6 kinds of microfacies, e.g. lagoon bioclasts micrite limestone microfacies, shoal bioclasts grainstone microfacies, backshoal bioclasts packstone microfacies, foreshoal bioclasts micrite limestone microfacies, shallow continental micrite limestone microfacies and reef limestone microfacies. Furthermore, 68 samples of these 120 log facies samples were chosen as training samples and another 52 samples were gotten as testing samples to test the predicting ability of the discrimination template. Compared with conventional methods, like Bayes stepwise discrimination, both the BP-ANN and PSO-BP-ANN can integrate more log details with a correct rate higher than 85%. Furthermore, PSO-BP-ANN has more simple structure, smaller amount of weight and threshold and less iteration time.展开更多
基金supported by the National Natural Science Foundation of China (12072365)the Natural Science Foundation of Hunan Province of China (2020JJ4657)。
文摘It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.
基金Project(50734007) supported by the National Natural Science Foundation of China
文摘In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process.
基金Project(61374051,61603387)supported by the National Natural Science Foundation of ChinaProjects(20150520112JH,20160414033GH)supported by the Scientific and Technological Development Plan in Jilin Province of ChinaProject(20150102)supported by Opening Funding of State Key Laboratory of Management and Control for Complex Systems,China
文摘A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooperation, the proposed decentralized position/force control scheme can be applied to series constrained reconfigurable manipulators. By multiplying each row of Jacobian matrix in the dynamics by contact force vector, the converted joint torque is obtained. Furthermore, using desired information of other joints instead of their actual values, the dynamics can be represented as a set of interconnected subsystems by model decomposition technique. An adaptive neural network controller is introduced to approximate the unknown dynamics of subsystem. The interconnection and the whole error term are removed by employing an adaptive sliding mode term. And then, the Lyapunov stability theory guarantees the stability of the closed-loop system. Finally, two reconfigurable manipulators with different configurations are employed to show the effectiveness of the proposed decentralized position/force control scheme.
基金supported by the National Natural Science Foundation of China(61233010 61305106)+2 种基金the Shanghai Natural Science Foundation(17ZR1409700 18ZR1415300)the basic research project of Shanghai Municipal Science and Technology Commission(16JC1400900)
文摘This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regions, allowing more processing is reserved only for these regions. The speed of object segmentation is significantly improved by the region proposal method.By the combination of the region proposal method based on the convolutional neural network and superpixel method, the category and location information can be used to segment objects and image redundancy is significantly reduced. The processing time is reduced considerably by this to achieve the real time. Experiments show that the proposed method can segment the interested target object in real time on an ordinary laptop.
基金Project(50579101) supported by the National Natural Science Foundation of China
文摘An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function.
基金Projects(70373017 70572090) supported by the National Natural Science Foundation of China
文摘Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, network reliability and the network loss are the main objective of transmission network planning. Combined with set pair analysis (SPA), particle swarm optimization (PSO), neural network (NN), a hybrid particle swarm optimization model was established with neural network and set pair analysis for transmission network planning (HPNS). Firstly, the contact degree of set pair analysis was introduced, the traditional goal set was converted into the collection of the three indicators including the identity degree, difference agree and contrary degree. On this bases, using shi(H), the three objective optimization problem was converted into single objective optimization problem. Secondly, using the fast and efficient search capabilities of PSO, the transmission network planning model based on set pair analysis was optimized. In the process of optimization, by improving the BP neural network constantly training so that the value of the fitness function of PSO becomes smaller in order to obtain the optimization program fitting the three objectives better. Finally, compared HPNS with PSO algorithm and the classic genetic algorithm, HPNS increased about 23% efficiency than THA, raised about 3.7% than PSO and improved about 2.96% than GA.
基金supported by the National Natural Science Foundation of China(61273190)
文摘This paper proposes an optimization algorithm based on a multi-loop control system with a neural network controller,in which the objective function that is used is the control plant of each sub-control system.To obtain the global optimization solution from a control plant that has many local minimum points,a transformation function is presented.On the one hand,this approach changes a complex objective function into a simple function under the condition of an unchanged globally optimal solution,to find the global optimization solution more easily by using a multi-loop control system.On the other hand,a special neural network(in which the node function can be simply positioned locally)that is composed of multiple transformation functions is used as the controller,which reduces the possibility of falling into local minimum points.At the same time,a filled function is presented as a control law;it can jump out of a local minimum point and move to another local minimum point that has a smaller value of the objective function.Finally,18 simulation examples are provided to show the effectiveness of the proposed method.
基金the National Natural Science Foundation of China (50138010)
文摘A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is composed of input, phase rotation, aggregation, reversal rotation and output. In this model, the input is described by qubits, and the output is given by the probability of the state in which (1) is observed. The phase rotation and the reversal rotation are performed by the universal quantum gates. Secondly, the quantum BP neural networks model is constructed, in which the output layer and the hide layer are quantum neurons. With the application of the gradient descent algorithm, a learning algorithm of the model is proposed, and the continuity of the model is proved. It is shown that this model and algorithm are superior to the conventional BP networks in three aspects: convergence speed, convergence rate and robustness, by two application examples of pattern recognition and function approximation.
基金Project(2007CB311106) supported by National Key Basic Research Program of ChinaProject(NEUL20090101) supported by the Foundation of National Information Control Laboratory of China
文摘Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network.
文摘Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model.
文摘For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with information sharing strategy and velocity disturbance operator,is proposed.In improved PSO algorithm,an information sharing strategy is used to avoid the premature convergence as much as possible;the velocity disturbance operator is adopted to jump out of this position once falling into the premature convergence.Simulations on lateral and longitudinal aerodynamic modeling for ATTAS (advanced technologies testing aircraft system) indicate that the proposed method can achieve the accuracy improvement of an order of magnitude compared with SPSO-WNN,and can converge to a satisfactory precision by only 60 120 iterations in contrast to SPSO-WNN with 6 times precocities in 200 times repetitive experiments using Morlet and Mexican hat wavelet functions.Furthermore,it is proved that the proposed method is feasible and effective for aerodynamic modeling from flight data.
基金This project was supported by the National Natural Science Foundation of China (50277010)Doctoral Special Fund of Ministry of Education (20020532016) and Fund of Outstanding Young Scientist of Hunan University.
文摘An optimal design approach of high order FIR digital filter is developed based on the algorithm of neural networks with cosine basis function . The main idea is to minimize the sum of the square errors between the amplitude response of the desired FIR filter and that of the designed by training the weights of neural networks, then obtains the impulse response of FIR digital filter . The convergence theorem of the neural networks algorithm is presented and proved, and the optimal design method is introduced by designing four kinds of FIR digital filters , i.e., low-pass, high-pass, bandpass , and band-stop FIR digital filter. The results of the amplitude responses show that attenuation in stop-bands is more than 60 dB with no ripple and pulse existing in pass-bands, and cutoff frequency of passband and stop-band is easily controlled precisely .The presented optimal design approach of high order FIR digital filter is significantly effective.
基金Project(70373017) supported by the National Natural Science Foundation of China
文摘Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the data of power demand from the year 1980 to 2005 in China, a nonlinear network model was obtained on the relationship between power demand and the factors which had impacts on it, and thus the above proposed method was verified. Meanwhile, the results were compared to those of neural network optimized by genetic algorithm. The results show that this method is superior to neural network optimized by genetic algorithm and is one of the effective ways of time series forecast.
基金This project was supported by the National Natural Science Foundation (No. 69875010).
文摘A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.
基金This project was supported by the National Natural Science Foundation of China (79970042).
文摘0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. Then, the 0-1 optimization problems are solved by a neural network model with transient chaotic dynamics (TCNN). Numerical simulations of two typical 0-1 optimization problems show that TCNN can overcome HNN's main drawbacks that it suffers from the local minimum and can search for the global optimal solutions in to solveing 0-1 optimization problems.
基金the National Key Research and Development Program (2018YFD0500704-03)Proiect of Ministry of Agriculture and Rura Affairs (SK201707)。
文摘The automatic control of cleaning need to be based on the total amount of manure in the house. Therefore, this article established a prediction model for the total amount of manure in a pig house and took the number of pigs in the house, age, feed intake,feeding time, the time when the ammonia concentration increased the fastest and the daily fixed cleaning time as variable factors for modelling, so that the model could obtain the current manure output according to the real-time input of time. A Backpropagation(BP) neural network was used for training. The cross-validation method was used to select the best hyperparameters, and the genetic algorithm(GA), particle swarm optimization(PSO) algorithm and mind evolutionary algorithm(MEA) were selected to optimize the initial network weights. The results showed that the model could predict the amount of manure in real-time according to the model input. After the cross-validation method determined the hyperparameters, the GA, PSO and MEA were used to optimize the manure prediction model. The GA had the best average performance.
文摘We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use multilayer feed forward neural network with GA can finish automatic identification of tomato maturation. The results of experiment showed that the accuracy was up to 94%.
基金This project was supported by the National Natural Science Foundation of China (No. 69874086).
文摘This paper describes a modified speed-sensorless control for induction motor (IM) based on space vector pulse width modulation and neural network. An Elman ANN method to identify the IM speed is proposed, with IM parameters employed as associated elements. The BP algorithm is used to provide an adaptive estimation of the motor speed. The effectiveness of the proposed method is verified by simulation results. The implementation on TMS320F240 fixed DSP is provided.
基金Project(41272137) supported by the National Natural Science Foundation of China
文摘Though traditional methods could recognize some facies, e.g. lagoon facies, backshoal facies and foreshoal facies, they couldn't recognize reef facies and shoal facies well. To solve this problem, back propagation neural network(BP-ANN) and an improved BP-ANN with better stability and suitability, optimized by a particle swarm optimizer(PSO) algorithm(PSO-BP-ANN) were proposed to solve the microfacies' auto discrimination of M formation from the R oil field in Iraq. Fourteen wells with complete core, borehole and log data were chosen as the standard wells and 120 microfacies samples were inferred from these 14 wells. Besides, the average value of gamma, neutron and density logs as well as the sum of squares of deviations of gamma were extracted as key parameters to build log facies(facies from log measurements)-microfacies transforming model. The total 120 log facies samples were divided into 12 kinds of log facies and 6 kinds of microfacies, e.g. lagoon bioclasts micrite limestone microfacies, shoal bioclasts grainstone microfacies, backshoal bioclasts packstone microfacies, foreshoal bioclasts micrite limestone microfacies, shallow continental micrite limestone microfacies and reef limestone microfacies. Furthermore, 68 samples of these 120 log facies samples were chosen as training samples and another 52 samples were gotten as testing samples to test the predicting ability of the discrimination template. Compared with conventional methods, like Bayes stepwise discrimination, both the BP-ANN and PSO-BP-ANN can integrate more log details with a correct rate higher than 85%. Furthermore, PSO-BP-ANN has more simple structure, smaller amount of weight and threshold and less iteration time.