期刊文献+
共找到1,826篇文章
< 1 2 92 >
每页显示 20 50 100
Improved wavelet neural network combined with particle swarm optimization algorithm and its application 被引量:1
1
作者 李翔 杨尚东 +1 位作者 乞建勋 杨淑霞 《Journal of Central South University of Technology》 2006年第3期256-259,共4页
An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learnin... An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function. 展开更多
关键词 artificial neural network particle swarm optimization algorithm short-term load forecasting WAVELET curse of dimensionality
在线阅读 下载PDF
Neural Network Predictive Control of Variable-pitch Wind Turbines Based on Small-world Optimization Algorithm 被引量:8
2
作者 WANG Shuangxin LI Zhaoxia LIU Hairui 《中国电机工程学报》 EI CSCD 北大核心 2012年第30期I0015-I0015,17,共1页
通过将混沌映射用于产生初始节点集和进行算子构造,提出一种新的基于实数编码的混沌小世界优化算法。采用4种算法对多例复杂函数的优化问题进行仿真试验,表明所提算法具有能够有效避免陷入局部极小值、快速搜索到最优值的能力。将上述... 通过将混沌映射用于产生初始节点集和进行算子构造,提出一种新的基于实数编码的混沌小世界优化算法。采用4种算法对多例复杂函数的优化问题进行仿真试验,表明所提算法具有能够有效避免陷入局部极小值、快速搜索到最优值的能力。将上述方法应用于变桨距风电机组启动并网时的转速控制,提出一种基于混沌小世界优化算法的神经网络预测控制策略,其预测模型由基于现场数据的神经网络模型建立。仿真与实际测试结果表明,该系统可以根据风速扰动提前预测电机的转速变化,使控制器超前动作,保证系统输出跟踪参考轨迹的方向稳步改变,确保风电机组平稳并网。 展开更多
关键词 优化算法 小世界 风力发电机组 预测控制 神经网络 变桨距 实时编码 混沌映射
在线阅读 下载PDF
Target maneuver trajectory prediction based on RBF neural network optimized by hybrid algorithm 被引量:12
3
作者 XI Zhifei XU An +2 位作者 KOU Yingxin LI Zhanwu YANG Aiwu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期498-516,共19页
Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a ta... Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model. 展开更多
关键词 trajectory prediction K-MEANS improved particle swarm optimization(IPSO) levenberg-marquardt(LM) radial basis function(RBF)neural network
在线阅读 下载PDF
Optimizing neural network forecast by immune algorithm 被引量:2
4
作者 杨淑霞 李翔 +1 位作者 李宁 杨尚东 《Journal of Central South University of Technology》 EI 2006年第5期573-576,共4页
Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the dat... Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the data of power demand from the year 1980 to 2005 in China, a nonlinear network model was obtained on the relationship between power demand and the factors which had impacts on it, and thus the above proposed method was verified. Meanwhile, the results were compared to those of neural network optimized by genetic algorithm. The results show that this method is superior to neural network optimized by genetic algorithm and is one of the effective ways of time series forecast. 展开更多
关键词 neural network FORECAST immune algorithm optimization
在线阅读 下载PDF
Modified imperialist competitive algorithm-based neural network to determine shear strength of concrete beams reinforced with FRP 被引量:6
5
作者 Amir HASANZADE-INALLU Panam ZARFAM Mehdi NIKOO 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3156-3174,共19页
Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data ... Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature. 展开更多
关键词 concrete shear strength fiber reinforced polymer (FRP) artificial neural networks (ANNs) levenberg-marquardt algorithm imperialist competitive algorithm (ICA)
在线阅读 下载PDF
Real-time Prediction Model of Amount of Manure in Winter Pig Pen Based on Backpropagation Neural Network 被引量:1
6
作者 Hu Zhen-nan Sun Hong-min +3 位作者 Li Xiao-ming Dai Bai-sheng Gao Yue Wang Yu-han 《Journal of Northeast Agricultural University(English Edition)》 CAS 2022年第4期77-90,共14页
The automatic control of cleaning need to be based on the total amount of manure in the house. Therefore, this article established a prediction model for the total amount of manure in a pig house and took the number o... The automatic control of cleaning need to be based on the total amount of manure in the house. Therefore, this article established a prediction model for the total amount of manure in a pig house and took the number of pigs in the house, age, feed intake,feeding time, the time when the ammonia concentration increased the fastest and the daily fixed cleaning time as variable factors for modelling, so that the model could obtain the current manure output according to the real-time input of time. A Backpropagation(BP) neural network was used for training. The cross-validation method was used to select the best hyperparameters, and the genetic algorithm(GA), particle swarm optimization(PSO) algorithm and mind evolutionary algorithm(MEA) were selected to optimize the initial network weights. The results showed that the model could predict the amount of manure in real-time according to the model input. After the cross-validation method determined the hyperparameters, the GA, PSO and MEA were used to optimize the manure prediction model. The GA had the best average performance. 展开更多
关键词 manure amount BP neural network weight optimization algorithm cross-validation
在线阅读 下载PDF
Intelligent decision support system of operation-optimization in copper smelting converter 被引量:1
7
作者 姚俊峰 梅炽 +2 位作者 彭小奇 周安梁 吴冬华 《Journal of Central South University of Technology》 2002年第2期138-141,共4页
An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging per... An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging period, optimization of cold material adding systems and air blasting systems, the display of on line parameters, and the forecasting of copper mass in the copper blow period in copper smelting converters. They were integrated to build the Intelligent Decision Support System of the Operation Optimization of Copper Smelting Converter(IDSSOOCSC), which is self learning and self adaptating. Development steps, monoblock structure and basic functions of the IDSSOOCSC were introduced. After it was applied in a copper smelting converter, every production quota was clearly improved after IDSSOOCSC had been run for 4 months. Blister copper productivity is increased by 6%, processing load of cold input is increased by 8% and average converter life span is improved from 213 to 235 furnace times. 展开更多
关键词 intelligent decision support system neural network pattern identification chaos genetic algorithm operation optimization copper smelting converter
在线阅读 下载PDF
Hybrid optimization model of product concepts
8
作者 薛立华 李永华 《Journal of Central South University of Technology》 EI 2006年第1期105-109,共5页
Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating... Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating its concepts was proposed, viz. an improved adaptive genetic algorithm was applied to explore the excavator concepts in the searching space of conceptual design, and a neural network was used to evaluate the fitness of the population. The optimization of generating concepts was finished through the "evolution - evaluation" iteration. The results show that by using the hybrid optimization model, not only the fitness evaluation and constraint conditions are well processed, but also the search precision and convergence speed of the optimization process are greatly improved. An example is presented to demonstrate the advantages of the orooosed method and associated algorithms. 展开更多
关键词 conceptual design morphological matrix genetic algorithm neural network hybrid optimization model
在线阅读 下载PDF
基于IWOA-LSTM算法的预应力钢筋混凝土梁损伤识别 被引量:4
9
作者 范旭红 章立栋 +2 位作者 杨帆 李青 郁董凯 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期105-112,119,共9页
为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模... 为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模型,根据经验设置LSTM模型的超参数容易导致网络陷入局部最优而影响了分类结果,提出采用Sine混沌映射和自适应权重来改进鲸鱼优化算法(WOA),对LSTM进行超参数寻优.设计了IWOA-LSTM算法模型,训练识别试验梁各损伤阶段的AE信号特征参数.定型网络结构,并识别同种工况下其他梁的AE信号.结果表明:IWOA-LSTM算法模型识别准确率均超过或接近92%,相较于普通LSTM模型,IWOA-LSTM模型识别准确率提高了约7%. 展开更多
关键词 预应力钢筋混凝土梁 声发射 损伤识别 长短时记忆神经网络 改进的鲸鱼优化算法
在线阅读 下载PDF
基于GA-LSTM的桥梁缆索腐蚀钢丝力学性能预测模型 被引量:5
10
作者 缪长青 吕悦凯 万春风 《东南大学学报(自然科学版)》 北大核心 2025年第1期140-145,共6页
为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经... 为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经元数量、窗口大小4个超参数,以预测不同腐蚀特征状态下钢丝的力学性能。将其与传统LSTM和GA-反向传播模型的预测结果进行比较。结果表明,GA-LSTM模型具有更高的预测精度和鲁棒性。在屈服强度与极限强度预测效果方面,均方根误差(root mean square error, RMSE)、平均绝对误差(mean absolute error, MAE)、决定系数分别提高约44%~61%、43%~57%、35%~92%。在屈服应变与极限应变预测效果方面,RMSE、MAE、决定系数分别提高约0~46%、7%~49%、12%~229%。所建立的模型可以作为一个有用的工具支持桥梁缆索腐蚀安全性评估工作。 展开更多
关键词 桥梁缆索腐蚀钢丝 力学性能预测 时序预测 神经网络 遗传算法 超参数优化
在线阅读 下载PDF
融合改进卷积神经网络和层次SVM的鸡蛋外观检测 被引量:1
11
作者 姚万鹏 张凌晓 +1 位作者 赵肖峰 王飞成 《食品与机械》 北大核心 2025年第1期158-164,共7页
[目的]实现鸡蛋精细化分类和提高鸡蛋外观检测的准确率。[方法]提出一种融合改进卷积神经网络和层次SVM的鸡蛋外观检测方案。(1)采用鸡蛋机器视觉图像采集设备获取不同方位、不同外观鸡蛋图像,并运用图像增强技术扩充鸡蛋图像数据库。(2... [目的]实现鸡蛋精细化分类和提高鸡蛋外观检测的准确率。[方法]提出一种融合改进卷积神经网络和层次SVM的鸡蛋外观检测方案。(1)采用鸡蛋机器视觉图像采集设备获取不同方位、不同外观鸡蛋图像,并运用图像增强技术扩充鸡蛋图像数据库。(2)设计改进的浣熊优化算法(coati optimization algorithm,COA)和FCM聚类算法,在此基础上对卷积神经网络(convolutional neural network,CNN)模型结构和超参数进行优化,以提升CNN泛化能力。运用优化后的CNN深度学习鸡蛋图像数据库,从而实现鸡蛋外观图像特征的有效提取。(3)建立层次支持向量机鸡蛋外观分类工具,最终实现对鸡蛋外观的准确检测分类。[结果]所提鸡蛋外观检测方案的检测准确率提高了1.74%~4.31%,检测时间降低了21.68%~53.51%。[结论]所提方法能够有效实现对鸡蛋的在线实时精细化分类。 展开更多
关键词 鸡蛋外观 卷积神经网络 浣熊优化算法 支持向量机 特征提取
在线阅读 下载PDF
基于自适应等效能耗最小的燃料电池船舶能量管理策略 被引量:1
12
作者 许晓彦 曹伟 韩冰 《太阳能学报》 北大核心 2025年第3期108-115,共8页
为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储... 为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储能系统最终电量和初始电量误差最小为目标函数,求解燃料电池系统和储能系统的最优运行轨迹;在下层优化中,建立等效因子的优化模型,提取最优等效因子的分布。然后,建立以系统状态参数为输入、等效因子为输出的神经网络模型。利用最优的等效因子作为训练样本,对神经网络模型进行训练。最后,将神经网络模型与等效能耗最小策略相结合,可实现等效因子的实时调整。在Matlab/Simulink中搭建船舶混合能源系统的仿真模型,对基于自适应等效能耗最小的能量管理策略进行验证。仿真结果表明,与基于恒定等效因子的等效能耗最小策略相比,储能系统的最终电量更接近初始值,氢气的总消耗量降低1.98%。 展开更多
关键词 燃料电池船 能量管理策略 神经网络 等效因子 多种群自适应协同的粒子群优化算法
在线阅读 下载PDF
基于层级分解的前围声学包多目标优化 被引量:1
13
作者 杨帅 吴宪 薛顺达 《振动与冲击》 北大核心 2025年第3期267-277,共11页
搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变... 搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变量范围,以PBNR(power based noise reduction)均值作为约束,以质量和成本作为优化目标,采用非支配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-II)进行多目标优化,得到Pareto多目标解集。并从中选取满足设计目标的最佳组合方案(材料组合、覆盖率、前围过孔密封方案选型)。结果显示,该模型最终的优化结果与实测结果接近,误差分别为0.35%,1.47%,1.82%,相较于初始声学包方案,优化后的结果显示,PBNR均值提升3.05%,其质量降低52.38%,成本降低15.15%,验证了所提方法的有效性和准确性。 展开更多
关键词 GAPSO-RBFNN 声学包 PBNR NSGA-II Pareto多目标解集
在线阅读 下载PDF
高精度椭圆阵列电流传感器误差优化算法研究 被引量:1
14
作者 沈悦 陆佳嘉 +2 位作者 唐玥 权硕 褚子扬 《传感器与微系统》 北大核心 2025年第2期39-43,共5页
为了减小由于矩形导体偏心和倾斜导致的传感器测量误差,实现电流高精度测量,提出一种基于灰狼优化(GWO)算法优化反向传播(BP)神经网络的椭圆阵列霍尔电流传感器误差优化方案。首先,基于三维磁场模型确定导体偏心参数和倾斜参数,并进行... 为了减小由于矩形导体偏心和倾斜导致的传感器测量误差,实现电流高精度测量,提出一种基于灰狼优化(GWO)算法优化反向传播(BP)神经网络的椭圆阵列霍尔电流传感器误差优化方案。首先,基于三维磁场模型确定导体偏心参数和倾斜参数,并进行电流反演,得出电流积分模型;然后,使用BP神经网络估计导体参数,并引入GWO算法优化BP神经网络的初始权值和阈值,构建导体状态参数估计模型,实现偏心与倾斜误差优化;最后,搭建实验平台,对本文提出的误差优化方案进行验证。实验结果表明:本文提出误差优化方案能够精确估计导体状态参数,进而有效减小偏心误差和倾斜误差,导体X向偏心产生的电流误差减小65.07%,Y向偏心产生的电流误差减小45.74%,偏离Z轴产生的倾斜电流误差减小76.15%。 展开更多
关键词 椭圆阵列传感器 矩形导体 偏心误差 倾斜误差 灰狼优化算法 反向传播神经网络
在线阅读 下载PDF
基于GA-BP神经网络的烟叶打叶风分工艺参数优化
15
作者 田斌强 付龙 +5 位作者 唐剑宁 刘辉 夏凡 黄沙 刘莉艳 郭筠 《河南农业大学学报》 北大核心 2025年第3期508-515,共8页
【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构... 【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构建GA-BP神经网络模型,并结合NSGA-Ⅱ的方法对工艺参数进一步优化。【结果】正交试验确定较高的大中片率最佳工艺参数为:第1至5级打叶转速分别为493、471、620、798、794 r·min^(-1),第7、第8级风机频率分别为49、45 Hz,较低的碎片率和叶中含梗率的最优工艺参数为:第1至5级打叶转速分别为503、489、621、792、792 r·min^(-1),第7、第8级风机频率分别为50、46 Hz。经GA-BP神经网络模型优化后为第1至5级打叶转速分别为485、474、620、796、794 r·min^(-1),第7、第8级风机频率分别为49、46 Hz,在此条件下,大中片率提升了1.52个百分点,叶中含梗率、碎片率分别降低了0.09和0.08个百分点。【结论】在正交试验的基础上,通过GA-BP神经网络模型优化多工艺参数,叶片结构更为合理,可为提升烟叶叶片加工质量提供参考。 展开更多
关键词 叶片结构 BP神经网络 遗传算法 打叶风分 参数优化
在线阅读 下载PDF
履带起重机桁架臂最大静力响应预测
16
作者 李金平 张宇 +4 位作者 田一 顾海荣 叶敏 张大庆 徐信芯 《中南大学学报(自然科学版)》 北大核心 2025年第7期2731-2740,共10页
为了快速、准确预测不同工况下履带起重机桁架臂结构最大静力响应,提出了一种将BP神经网络和改进的COOT算法(ICOOT)相结合的ICOOT-BP神经网络预测模型。首先,采用Ansys参数化设计语言创建桁架臂在不同工况、杆件尺寸参数和载荷作用下最... 为了快速、准确预测不同工况下履带起重机桁架臂结构最大静力响应,提出了一种将BP神经网络和改进的COOT算法(ICOOT)相结合的ICOOT-BP神经网络预测模型。首先,采用Ansys参数化设计语言创建桁架臂在不同工况、杆件尺寸参数和载荷作用下最大静力响应的参数化模型,获取静力响应训练样本;其次,使用Tent混沌映射和自适应变异方法改进原始COOT算法,提高其优化能力,得到了改进的COOT算法(ICOOT);最后,确定了BP神经网络模型的拓扑结构,利用ICOOT算法优化BP神经网络中的权值和阈值,建立桁架臂静力分析时输入参数与输出响应之间的代理模型ICOOT-BP。研究结果表明:某型履带起重机桁架臂在多种工况下,ICOOT-BP模型能够快速预测桁架臂的最大静力响应,预测结果与有限元分析结果具有高度一致性,位移和应力相对误差绝对值均小于4%,且在预测精度与训练效率方面均显著高于所对比的其他预测模型。所提ICOOT-BP模型极大地提高了履带起重机桁架臂的最大静力响应分析效率,可为桁架臂力学分析与结构优化设计提供准确的结构分析代理模型。 展开更多
关键词 履带起重机 桁架臂 静力响应预测 BP神经网络 改进的COOT算法
在线阅读 下载PDF
高速动车组车体轻量化与模态匹配优化设计研究
17
作者 王浩 李凡松 +2 位作者 杜翔 王成强 邬平波 《中南大学学报(自然科学版)》 北大核心 2025年第4期1658-1672,共15页
针对高速动车组车体轻量化设计导致的一阶菱形模态频率降低问题,从车体设计出发,研究无横梁底架的车体提升一阶菱形模态频率的设计方法。基于灵敏度及模态振型分析对车体的结构进行优化、基于卷积神经网络代理模型以及协方差矩阵自适应... 针对高速动车组车体轻量化设计导致的一阶菱形模态频率降低问题,从车体设计出发,研究无横梁底架的车体提升一阶菱形模态频率的设计方法。基于灵敏度及模态振型分析对车体的结构进行优化、基于卷积神经网络代理模型以及协方差矩阵自适应演化优化算法对车体断面型材厚度进行优化。基于线路实测车轮和钢轨外形,建立考虑弹性车体的动车组刚柔耦合动力学模型。研究结果表明:优化后车体骨架质量减小680 kg,质量减小率为6.4%,整备状态下一阶菱形频率提升1.66 Hz,提升了19.1%。优化后的车体不仅轻量化程度更高,且能够有效抑制车体的异常弹性振动,提高乘客的乘坐舒适性。 展开更多
关键词 动车组 抖车 结构优化 菱形模态 卷积神经网络 优化算法
在线阅读 下载PDF
基于混合神经网络的风电场测风数据插补方法的研究
18
作者 邢作霞 丑佳明 +3 位作者 郭珊珊 陈明阳 陈亮 刘洋 《太阳能学报》 北大核心 2025年第5期458-464,共7页
研究一种基于混合神经网络的风电场测风数据插补模型,该模型(CNN-LSTM-SA)的超参数通过PSO-GWO优化算法优化,然后对测风数据进行插补。首先选取待插补高度下的两个相邻高度的测风数据、中尺度数据及待插补高度其他时间段的风速数据,建... 研究一种基于混合神经网络的风电场测风数据插补模型,该模型(CNN-LSTM-SA)的超参数通过PSO-GWO优化算法优化,然后对测风数据进行插补。首先选取待插补高度下的两个相邻高度的测风数据、中尺度数据及待插补高度其他时间段的风速数据,建立一个“3种特征1个目标数据”的回归模型,然后使用该模型对其目标插补数据进行预测以达到插补的目的。以辽宁某风电场的测风数据进行仿真验证,仿真结果表明,该方法归一化均方误差NMSE为0.0021、发电量为1143732 kWh,均优于工程中常用方法的插补结果,对工程实际工作具有一定的参考意义。 展开更多
关键词 风电场 风资源评估 插补 神经网络 优化算法 超参数
在线阅读 下载PDF
优化算法在污水处理中的应用进展
19
作者 刘良才 毛文煜 +6 位作者 郑逸洁 戴泽军 胡启星 胡智泉 陈鹏 郑军 刘李侃 《工业水处理》 北大核心 2025年第7期11-18,共8页
现有的污水处理系统存在自动化水平低、运行成本高和出水不稳定等问题,优化算法的应用可以提高水处理过程的处理效率和自动化控制水平。综述了污水处理系统几种主要的优化算法,包括遗传算法(GA)、粒子群优化算法(PSO)、随机森林(RF)、... 现有的污水处理系统存在自动化水平低、运行成本高和出水不稳定等问题,优化算法的应用可以提高水处理过程的处理效率和自动化控制水平。综述了污水处理系统几种主要的优化算法,包括遗传算法(GA)、粒子群优化算法(PSO)、随机森林(RF)、人工神经网络(ANN)、模糊逻辑控制(FLC)和混合优化算法,并介绍了各类优化算法的优缺点及适用范围,随后讨论了优化算法在水质异常数据监测与补偿、运行参数预测、控制参数优化和多目标优化控制等不同水处理环节中的应用。优化算法的应用提升了污水处理的自动化控制水平、出水质量,降低了运营成本,可有效预测和调节操作参数。最后,探讨了优化算法在实际工程应用中面临的挑战,指出优化算法和系统集成技术仍存在局限,并为优化算法在水处理领域的深入研究与应用指明了发展方向。 展开更多
关键词 污水处理 优化算法 机器学习 模型预测 神经网络
在线阅读 下载PDF
基于WOA-WNN-LSTM算法的红外CO痕量气体压力补偿与时序浓度分析
20
作者 田富超 张海龙 +3 位作者 苏嘉豪 梁运涛 王琳 王泽文 《光谱学与光谱分析》 北大核心 2025年第4期994-1007,共14页
红外光谱分析是工业环境气体定量分析的重要手段,当前红外气体检测仪的测量精度受环境压力变化影响较大,导致检测数据在不同压力条件下偏离实际气体浓度。为提高红外气体传感器的精度,选择了鲸鱼优化算法(whale optimization algorithm,... 红外光谱分析是工业环境气体定量分析的重要手段,当前红外气体检测仪的测量精度受环境压力变化影响较大,导致检测数据在不同压力条件下偏离实际气体浓度。为提高红外气体传感器的精度,选择了鲸鱼优化算法(whale optimization algorithm,WOA)和小波神经网络(wavelet neural network,WNN)相结合的压力补偿算法,并结合长短期记忆法(long short-term memory,LSTM)对补偿后的数据进行预测。通过搭建工业环境气体压力补偿实验平台,使用高精度配气仪配置100~900 ppm标准CO气体,在80~120 kPa范围内进行数百组重复实验,发现CO气体传感器在负压条件下测量值小于标气浓度,正压条件下测量值大于标气浓度,并随压力变化呈线性关系,绝对误差最高为86 ppm。将传感器数据使用小波神经网络进行误差降低,初步补偿后的CO误差降至26 ppm,但由于参数可移植性较差,个别数据误差较大。进一步使用鲸鱼优化算法优化小波神经网络的参数后,补偿效果显著提升,传感器测量值与真值之差保持在0.004%以内且数据稳定。最终结合LSTM进行气体浓度预测,预测值与实际值之间的均方根误差(RMSE)均小于0.1,平均绝对误差(MAE)均小于0.020,实验结果表明,WOA-WNN-LSTM算法能够有效提高红外气体传感器的测量精度,成功消除环境压力对测量结果的影响,为工业环境气体检测提供了更为可靠和精准的解决方案。 展开更多
关键词 红外光谱分析 环境压力补偿 鲸鱼优化算法 小波神经网络 时序浓度预测
在线阅读 下载PDF
上一页 1 2 92 下一页 到第
使用帮助 返回顶部