期刊文献+
共找到3,639篇文章
< 1 2 182 >
每页显示 20 50 100
Application of a neural network system combined with genetic algorithm to rank coalbed methane reservoirs in the order of exploitation priority 被引量:4
1
作者 Li Weichao Wu Xiaodong Shi Junfeng 《Petroleum Science》 SCIE CAS CSCD 2008年第4期334-339,共6页
A new method based on the combination of a neural network and a genetic algorithm was proposed to rank the order of exploitation priority of coalbed methane reservoirs. The neural network was used to acquire the weigh... A new method based on the combination of a neural network and a genetic algorithm was proposed to rank the order of exploitation priority of coalbed methane reservoirs. The neural network was used to acquire the weights of reservoir parameters through sample training and genetic algorithm was used to optimize the initial connection weights of nerve cells in case the neural network fell into a local minimum. Additionally, subordinate functions of each parameter were established to normalize the actual values of parameters of coalbed methane reservoirs in the range between zero and unity. Eventually, evaluation values of all coalbed methane reservoirs could be obtained by using the comprehensive evaluation method, which is the basis to rank the coalbed methane reservoirs in the order of exploitation priority. The greater the evaluation value, the higher the exploitation priority. The ranking method was verified in this paper by ten exploited coalbed methane reservoirs in China. The evaluation results are in agreement with the actual exploitation cases. The method can ensure the truthfulness and credibility of the weights of parameters and avoid the subjectivity caused by experts. Furthermore, the probability of falling into local minima is reduced, because genetic the algorithm is used to optimize the neural network system. 展开更多
关键词 Coalbed methane neural network system genetic algorithm evaluation index WEIGHT
在线阅读 下载PDF
Research on a TOPSIS energy efficiency evaluation system for crude oil gathering and transportation systems based on a GA-BP neural network 被引量:1
2
作者 Xue-Qiang Zhang Qing-Lin Cheng +2 位作者 Wei Sun Yi Zhao Zhi-Min Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期621-640,共20页
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud... As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems. 展开更多
关键词 Crude oil gathering and transportation system GA-BP neural network Energy efficiency evaluation TOPSIS evaluation method Energy saving and consumption reduction
在线阅读 下载PDF
Causally enhanced initial conditions: A novel soft constraints strategy for physics informed neural networks
3
作者 Wenshu Zha Dongsheng Chen +2 位作者 Daolun Li Luhang Shen Enyuan Chen 《Chinese Physics B》 2025年第4期365-375,共11页
Physics informed neural networks(PINNs)are a deep learning approach designed to solve partial differential equations(PDEs).Accurately learning the initial conditions is crucial when employing PINNs to solve PDEs.Howev... Physics informed neural networks(PINNs)are a deep learning approach designed to solve partial differential equations(PDEs).Accurately learning the initial conditions is crucial when employing PINNs to solve PDEs.However,simply adjusting weights and imposing hard constraints may not always lead to better learning of the initial conditions;sometimes it even makes it difficult for the neural networks to converge.To enhance the accuracy of PINNs in learning the initial conditions,this paper proposes a novel strategy named causally enhanced initial conditions(CEICs).This strategy works by embedding a new loss in the loss function:the loss is constructed by the derivative of the initial condition and the derivative of the neural network at the initial condition.Furthermore,to respect the causality in learning the derivative,a novel causality coefficient is introduced for the training when selecting multiple derivatives.Additionally,because CEICs can provide more accurate pseudo-labels in the first subdomain,they are compatible with the temporal-marching strategy.Experimental results demonstrate that CEICs outperform hard constraints and improve the overall accuracy of pre-training PINNs.For the 1D-Korteweg–de Vries,reaction and convection equations,the CEIC method proposed in this paper reduces the relative error by at least 60%compared to the previous methods. 展开更多
关键词 initial condition physics informed neural networks temporal march causality coefficient
在线阅读 下载PDF
Neural network analysis for prediction of heat transfer of aqueous hybrid nanofluid flow in a variable porous space with varying film thickness over a stretched surface
4
作者 Abeer S Alnahdi Taza Gul 《Chinese Physics B》 2025年第2期316-326,共11页
The high thermal conductivity of the nanoparticles in hybrid nanofluids results in enhanced thermal conductivity associated with their base fluids.Enhanced heat transfer is a result of this high thermal conductivity,w... The high thermal conductivity of the nanoparticles in hybrid nanofluids results in enhanced thermal conductivity associated with their base fluids.Enhanced heat transfer is a result of this high thermal conductivity,which has significant applications in heat exchangers and engineering devices.To optimize heat transfer,a liquid film of Cu and TiO_(2)hybrid nanofluid behind a stretching sheet in a variable porous medium is being considered due to its importance.The nature of the fluid is considered time-dependent and the thickness of the liquid film is measured variable adjustable with the variable porous space and favorable for the uniform flow of the liquid film.The solution of the problem is acquired using the homotopy analysis method HAM,and the artificial neural network ANN is applied to obtain detailed information in the form of error estimation and validations using the fitting curve analysis.HAM data is utilized to train the ANN in this study,which uses Cu and TiO_(2)hybrid nanofluids in a variable porous space for unsteady thin film flow,and it is used to train the ANN.The results indicate that Cu and TiO_(2)play a greater role in boosting the rate. 展开更多
关键词 thin film of Cu and TiO_(2)hybrid nanofluids variable porous space unsteady stretching sheet viscous dissipation heat transfer optimization artificial neural network
在线阅读 下载PDF
An efficient and accurate numerical method for simulating close-range blast loads of cylindrical charges based on neural network
5
作者 Ting Liu Changhai Chen +2 位作者 Han Li Yaowen Yu Yuansheng Cheng 《Defence Technology(防务技术)》 2025年第2期257-271,共15页
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim... To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures. 展开更多
关键词 Close-range air blast load Cylindrical charge Numerical method neural network CEL method CONWEP model
在线阅读 下载PDF
Enhancing neural network robustness: Laser fault injection resistance in 55-nm SRAM for space applications
6
作者 Qing Liu Haomiao Cheng +3 位作者 Xiang Yao Zhengxuan Zhang Zhiyuan Hu Dawei Bi 《Chinese Physics B》 2025年第4期478-484,共7页
The integration of artificial intelligence(AI)with satellite technology is ushering in a new era of space exploration,with small satellites playing a pivotal role in advancing this field.However,the deployment of mach... The integration of artificial intelligence(AI)with satellite technology is ushering in a new era of space exploration,with small satellites playing a pivotal role in advancing this field.However,the deployment of machine learning(ML)models in space faces distinct challenges,such as single event upsets(SEUs),which are triggered by space radiation and can corrupt the outputs of neural networks.To defend against this threat,we investigate laser-based fault injection techniques on 55-nm SRAM cells,aiming to explore the impact of SEUs on neural network performance.In this paper,we propose a novel solution in the form of Bin-DNCNN,a binary neural network(BNN)-based model that significantly enhances robustness to radiation-induced faults.We conduct experiments to evaluate the denoising effectiveness of different neural network architectures,comparing their resilience to weight errors before and after fault injections.Our experimental results demonstrate that binary neural networks(BNNs)exhibit superior robustness to weight errors compared to traditional deep neural networks(DNNs),making them a promising candidate for spaceborne AI applications. 展开更多
关键词 single event effects convolutional neural network fault injection SRAM
在线阅读 下载PDF
Photonic Chip Based on Ultrafast Laser-Induced Reversible Phase Change for Convolutional Neural Network
7
作者 Jiawang Xie Jianfeng Yan +5 位作者 Haoze Han Yuzhi Zhao Ma Luo Jiaqun Li Heng Guo Ming Qiao 《Nano-Micro Letters》 2025年第8期53-66,共14页
Photonic computing has emerged as a promising technology for the ever-increasing computational demands of machine learning and artificial intelligence.Due to the advantages in computing speed,integrated photonic chips... Photonic computing has emerged as a promising technology for the ever-increasing computational demands of machine learning and artificial intelligence.Due to the advantages in computing speed,integrated photonic chips have attracted wide research attention on performing convolutional neural network algorithm.Programmable photonic chips are vital for achieving practical applications of photonic computing.Herein,a programmable photonic chip based on ultrafast laser-induced phase change is fabricated for photonic computing.Through designing the ultrafast laser pulses,the Sb film integrated into photonic waveguides can be reversibly switched between crystalline and amorphous phase,resulting in a large contrast in refractive index and extinction coefficient.As a consequence,the light transmission of waveguides can be switched between write and erase states.To determine the phase change time,the transient laser-induced phase change dynamics of Sb film are revealed at atomic scale,and the time-resolved transient reflectivity is measured.Based on the integrated photonic chip,photonic convolutional neural networks are built to implement machine learning algorithm,and images recognition task is achieved.This work paves a route for fabricating programmable photonic chips by designed ultrafast laser,which will facilitate the application of photonic computing in artificial intelligence. 展开更多
关键词 Photonic chip Ultrafast laser Phase change Convolutional neural network
在线阅读 下载PDF
Research on the X-ray polarization deconstruction method based on hexagonal convolutional neural network
8
作者 Ya-Nan Li Jia-Huan Zhu +5 位作者 Huai-Zhong Gao Hong Li Ji-Rong Cang Zhi Zeng Hua Feng Ming Zeng 《Nuclear Science and Techniques》 2025年第2期49-61,共13页
Track reconstruction algorithms are critical for polarization measurements.Convolutional neural networks(CNNs)are a promising alternative to traditional moment-based track reconstruction approaches.However,the hexagon... Track reconstruction algorithms are critical for polarization measurements.Convolutional neural networks(CNNs)are a promising alternative to traditional moment-based track reconstruction approaches.However,the hexagonal grid track images obtained using gas pixel detectors(GPDs)for better anisotropy do not match the classical rectangle-based CNN,and converting the track images from hexagonal to square results in a loss of information.We developed a new hexagonal CNN algorithm for track reconstruction and polarization estimation in X-ray polarimeters,which was used to extract the emission angles and absorption points from photoelectron track images and predict the uncer-tainty of the predicted emission angles.The simulated data from the PolarLight test were used to train and test the hexagonal CNN models.For individual energies,the hexagonal CNN algorithm produced 15%-30%improvements in the modulation factor compared to the moment analysis method for 100%polarized data,and its performance was comparable to that of the rectangle-based CNN algorithm that was recently developed by the Imaging X-ray Polarimetry Explorer team,but at a lower computational and storage cost for preprocessing. 展开更多
关键词 X-ray polarization Track reconstruction Deep learning Hexagonal conventional neural network
在线阅读 下载PDF
Atmospheric neutron single event effects for multiple convolutional neural networks based on 28-nm and 16-nm SoC
9
作者 Xu Zhao Xuecheng Du +3 位作者 Chao Ma Zhiliang Hu Weitao Yang Bo Zheng 《Chinese Physics B》 2025年第1期477-484,共8页
The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spect... The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips. 展开更多
关键词 single event effects atmospheric neutron system on chip convolutional neural network
在线阅读 下载PDF
Single event effects evaluation on convolution neural network in Xilinx 28 nm system on chip
10
作者 赵旭 杜雪成 +4 位作者 熊旭 马超 杨卫涛 郑波 周超 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期638-644,共7页
Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic partic... Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic particles, such as heavy ions, protons, and alpha particles, can induce single event effects(SEEs) that lead CNNs to malfunction and can significantly impact the reliability of a CNN system. In this paper, the MNIST CNN system was constructed based on a 28 nm systemon-chip(SoC), and then an alpha particle irradiation experiment and fault injection were applied to evaluate the SEE of the CNN system. Various types of soft errors in the CNN system have been detected, and the SEE cross sections have been calculated. Furthermore, the mechanisms behind some soft errors have been explained. This research will provide technical support for the design of radiation-resistant artificial intelligence chips. 展开更多
关键词 single event effects convolutional neural networks alpha particle system on chip fault injection
在线阅读 下载PDF
IoT Enabled Microgrid Framework Using a Novel Dispersal Diffusion Artificial Neural Network Controller for PV Systems and Wind Energy to Minimize Electrical Faults
11
作者 V V Vijetha Inti V S Vakula 《China Communications》 SCIE CSCD 2024年第12期217-230,共14页
A system based on a PV-Wind will ensure better efficiency and flexibility using lower energy production.Today,plenty of work is being focussed on Doubly Fed Induction Generators(DFIG)utilized in wind energy systems.DF... A system based on a PV-Wind will ensure better efficiency and flexibility using lower energy production.Today,plenty of work is being focussed on Doubly Fed Induction Generators(DFIG)utilized in wind energy systems.DFIG is found to be the best option in the Wind Energy Conversion Systems(WECS)to mitigate the issues caused by power converters.In this work,a new Artificial Neural Network(ANN)is proposed with the Diffusion and Dispersal strategy that works on Maximum Power Point Tracking(MPPT)along with Wind Energy Conversion System(WECS)to minimize electrical faults.The controller focus was not just to increase performance but also to reduce damage owing to any phase to phase fault or Phase to phase to ground fault.To ensure optimal MPPT for the proposed WECS,ANN achieves the optimal PI controller parameters for the indirect control of active and reactive power of DFIG.The optimal allocation and size of the DGs within the distributed system and for MPPT control are obtained using a population of agents.The generated solutions are evaluated and on being successful,the agents test their hypothesis again to create a positive feedback mechanism.Simulations are carried out,and the proposed IoT framework efficiency indicates performance improvement and faster recovery against faults by 9 percent for phase to ground fault and by 7.35 percent for phase to phase fault. 展开更多
关键词 dispersal diffusion search and artificial neural network maximum power point tracking(MPPT) photovoltaic(PV)array wind energy conversion system(WECS)
在线阅读 下载PDF
Online Neural Network Tuned Tube-Based Model Predictive Control for Nonlinear System
12
作者 Yuzhou Xiao Yan Li Lingguo Cui 《Journal of Beijing Institute of Technology》 EI CAS 2024年第6期547-555,共9页
This paper proposes a robust control scheme based on the sequential convex programming and learning-based model for nonlinear system subjected to additive uncertainties.For the problem of system nonlinearty and unknow... This paper proposes a robust control scheme based on the sequential convex programming and learning-based model for nonlinear system subjected to additive uncertainties.For the problem of system nonlinearty and unknown uncertainties,we study the tube-based model predictive control scheme that makes use of feedforward neural network.Based on the characteristics of the bounded limit of the average cost function while time approaching infinity,a min-max optimization problem(referred to as min-max OP)is formulated to design the controller.The feasibility of this optimization problem and the practical stability of the controlled system are ensured.To demonstrate the efficacy of the proposed approach,a numerical simulation on a double-tank system is conducted.The results of the simulation serve as verification of the effectualness of the proposed scheme. 展开更多
关键词 nonlinear model predictive control machine learning neural network control
在线阅读 下载PDF
Backlash Nonlinear Compensation of Servo Systems Using Backpropagation Neural Networks 被引量:2
13
作者 何超 徐立新 张宇河 《Journal of Beijing Institute of Technology》 EI CAS 1999年第3期300-305,共6页
Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on s... Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on some weapon tracking servo system, a three layer BPNN was used to off line identify the backlash characteristics, then a nonlinear compensator was designed according to the identification results. Results The simulation results show that the method can effectively get rid of the sustained oscillation(limit cycle) of the system caused by the backlash characteristics, and can improve the system accuracy. Conclusion The method is effective on sloving the problems produced by the backlash characteristics in servo systems, and it can be easily accomplished in engineering. 展开更多
关键词 servo system backlash nonlinear characteristics limit cycle backpropagation neural networks(BPNN) compensation methods
在线阅读 下载PDF
DAMAGE CLASSIFICATION BY PROBABILISTIC NEURAL NETWORKS BASED ON LATENT COMPONENTS FOR TIME-VARYING SYSTEM 被引量:1
14
作者 袁健 周燕 吕欣 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期259-267,共9页
A new approach to damage classification for health monitoring of a time-varylng system is presented. The functional-series time-dependent auto regressive moving average (FS-TARMA) time series model is applied to the... A new approach to damage classification for health monitoring of a time-varylng system is presented. The functional-series time-dependent auto regressive moving average (FS-TARMA) time series model is applied to the vibration signal observed in the time-varying system for estimating the TAR/TMA parameters and the innovation variance. These parameters are the functions of the time, represented by a group of projection coefficients on the certain functional subspace with specific basis functions. The estimated TAR/TMA parameters and the innovation variance are further used to calculate the latent components (LCs) as the more informative data for health monitoring evaluation, based on an eigenvalue decomposition technique. LCs are then combined and reduced to numerical values (NVs) as feature sets, which are input to a probabilistic neural network (PNN) for the damage classification. For the evaluation of the proposed method, numerical simulations of the damage classification for a tlme-varylng system are used, in which different classes of damage are modeled by the mass or stiffness reductions. It is demonstrated that the method can identify the damages in the course of operation and the change of parameters on the time-varying background of the system. 展开更多
关键词 damage detection time-varying system feature extraction/reduction probabilistic neural networks
在线阅读 下载PDF
INDUCTION MOTOR SPEED CONTROL SYSTEM BASED ON FUZZY NEURAL NETWORK 被引量:1
15
作者 徐小增 李叶松 秦忆 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第3期195-199,共5页
A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teachin... A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness. 展开更多
关键词 induction motor fuzzy neural network vector control speed control system
在线阅读 下载PDF
AN INTELLIGENT TOOL CONDITION MONITORING SYSTEM USING FUZZY NEURAL NETWORKS 被引量:3
16
作者 赵东标 KeshengWang OliverKrimmel 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期169-175,共7页
Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificia... Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificial neural networks (ANNs) are used for this purpose in conjunction with suitable sensory systems. The present work in Norwegian University of Science and Technology (NTNU) uses back propagation neural networks (BP) and fuzzy neural networks (FNN) to process the cutting tool state data measured with force and acoustic emission (AE) sensors, and implements a valuable on line tool condition monitoring system using the ANNs. Different ANN structures are designed and investigated to estimate the tool wear state based on the fusion of acoustic emission and force signals. Finally, four case studies are introduced for the sensing and ANN processing of the tool wear states and the failures of the tool with practical experiment examples. The results indicate that a tool wear identification system can be achieved using the sensors integration with ANNs, and that ANNs provide a very effective method of implementing sensor integration for on line monitoring of tool wear states and abnormalities. 展开更多
关键词 tool condition monitoring neural networks fuzzy logic acoustic emission force sensor fuzzy neural networks
在线阅读 下载PDF
Identification and Control of Dynamical Systems Using Modified Neural Networks
17
作者 任雪梅 陈杰 《Journal of Beijing Institute of Technology》 EI CAS 1999年第3期238-244,共7页
Aim To study the identification and control of nonlinear systems using neural networks. Methods A new type of neural network in which the dynamical error feedback is used to modify the inputs of the network was empl... Aim To study the identification and control of nonlinear systems using neural networks. Methods A new type of neural network in which the dynamical error feedback is used to modify the inputs of the network was employed to reduce the inherent network approximation error. Results A new identification model constructed by the proposed network and stable filters was derived for continuous time nonlinear systems, and a stable adaptive control scheme based on the proposed networks was developed. Conclusion Theory and simulation results show that the modified neural network is feasible to control a class of nonlinear systems. 展开更多
关键词 nonlinear systems neural networks adaptive control system identification
在线阅读 下载PDF
DESIGN OF NONLINEAR OBSERVER FOR NONLINEAR SYSTEM BASED ON RBF NEURAL NETWORKS
18
作者 龚华军 Chowdhury F N 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期311-315,共5页
A new type of nonlinear observer for nonlinear systems is presented. Instead of approximating thc cntire nonlinear system with the neural network (NN), only the un-modeled part left over after the lincarization is a... A new type of nonlinear observer for nonlinear systems is presented. Instead of approximating thc cntire nonlinear system with the neural network (NN), only the un-modeled part left over after the lincarization is approximated. Compared with the conventional linear observer, the observer provides more accurate estimation of the state. The state estimation error is proved to asymptotically approach zero with the Lyapunov method. The simulation result shows that the proposed observer scheme is effective and has a potential application ability in the fault detection and identification (FDI), and the state estimation. 展开更多
关键词 observer nonlinear system state estimation neural network
在线阅读 下载PDF
Model Identification of Water Purification Systems Using RBF Neural Network
19
作者 徐立新 《Journal of Beijing Institute of Technology》 EI CAS 1998年第3期293-395,296-298,共6页
Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build... Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build the neural network model by which the expected outflow CODM can be acquired under the inflow CODM condition. Results The improved self-organized learning algorithm can assign the centers into appropriate places , and the RBF network's outputs at the sample points fit the experimental data very well. Conclusion The model of ozonation /BAC system based on the RBF network am describe the relationshipamong various factors correctly, a new prouding approach tO the wate purification process is provided. 展开更多
关键词 RBF neural network: identification OZONE biological activated carbon
在线阅读 下载PDF
Pluggable multitask diffractive neural networks based on cascaded metasurfaces 被引量:7
20
作者 Cong He Dan Zhao +8 位作者 Fei Fan Hongqiang Zhou Xin Li Yao Li Junjie Li Fei Dong Yin-Xiao Miao Yongtian Wang Lingling Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c... Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems. 展开更多
关键词 optical neural networks diffractive deep neural networks cascaded metasurfaces
在线阅读 下载PDF
上一页 1 2 182 下一页 到第
使用帮助 返回顶部