期刊文献+
共找到106篇文章
< 1 2 6 >
每页显示 20 50 100
基于抽象标签序列与大语言模型的业务过程自动生成
1
作者 朱锐 肖鸿浩 +4 位作者 李文鑫 胡泉舟 宋俊巧 胡胜男 陈晔婷 《计算机集成制造系统》 北大核心 2025年第5期1639-1650,共12页
大语言模型的迅速发展对企业领域的业务过程管理产生了提高效率、降低成本、增强客户体验和促进创新等显著影响。业务过程管理(BPM)中的业务过程自动生成具有模拟业务过程进行业务改进以及将复杂的业务过程可视化等重大意义。所提出的... 大语言模型的迅速发展对企业领域的业务过程管理产生了提高效率、降低成本、增强客户体验和促进创新等显著影响。业务过程管理(BPM)中的业务过程自动生成具有模拟业务过程进行业务改进以及将复杂的业务过程可视化等重大意义。所提出的业务过程自动生成方法能够整合到实际业务场景中,以帮助改善业务过程并提高效率。所提方法分为以下几个部分,首先将业务过程文本经过信号词库转化为抽象标签序列,其次构建提示模板从大语言模型中得到抽象标签的邻接表从而确定抽象标签之间的连接关系得到一张初始图,随后将初始图输入到归纳式图神经网络进行监督学习训练,最后预测出活动间直接时序关系并将其转化为过程图。实验表明,所提方法在预测活动间时序关系的总体F1-分数达到了0.67,在预测顺序、并发和无关系的时序关系上领先基线方法和大语言模型的方法,在选择关系上能够领先基线方法但落后于大语言模型的方法。 展开更多
关键词 大语言模型 业务过程管理 业务过程自动生成 图神经网络
在线阅读 下载PDF
大模型时代下的汉语自然语言处理研究与探索 被引量:4
2
作者 黄施洋 奚雪峰 崔志明 《计算机工程与应用》 北大核心 2025年第1期80-97,共18页
自然语言处理是实现人机交互的关键步骤,而汉语自然语言处理(Chinese natural language processing,CNLP)是其中的重要组成部分。随着大模型技术的发展,CNLP进入了一个新的阶段,这些汉语大模型具备更强的泛化能力和更快的任务适应性。然... 自然语言处理是实现人机交互的关键步骤,而汉语自然语言处理(Chinese natural language processing,CNLP)是其中的重要组成部分。随着大模型技术的发展,CNLP进入了一个新的阶段,这些汉语大模型具备更强的泛化能力和更快的任务适应性。然而,相较于英语大模型,汉语大模型在逻辑推理和文本理解能力方面仍存在不足。介绍了图神经网络在特定CNLP任务中的优势,进行了量子机器学习在CNLP发展潜力的调查。总结了大模型的基本原理和技术架构,详细整理了大模型评测任务的典型数据集和模型评价指标,评估比较了当前主流的大模型在CNLP任务中的效果。分析了当前CNLP存在的挑战,并对CNLP任务的未来研究方向进行了展望,希望能帮助解决当前CNLP存在的挑战,同时为新方法的提出提供了一定的参考。 展开更多
关键词 汉语自然语言处理 图神经网络 量子机器学习 汉语大模型
在线阅读 下载PDF
基于多源知识注入的常识问答方法研究 被引量:1
3
作者 朱嘉骏 包美凯 +2 位作者 张凯 刘烨 刘淇 《计算机工程与科学》 北大核心 2025年第2期349-360,共12页
常识问答任务致力于让模型回答人类常识问题。针对该任务的一类方法是检索相关的知识来辅助模型回答常识问题。该类方法主要分为知识查询和知识推理2个步骤。知识查询是指根据问题检索到与之相关联的知识,而知识推理是指利用检索到的知... 常识问答任务致力于让模型回答人类常识问题。针对该任务的一类方法是检索相关的知识来辅助模型回答常识问题。该类方法主要分为知识查询和知识推理2个步骤。知识查询是指根据问题检索到与之相关联的知识,而知识推理是指利用检索到的知识辅助回答常识问题。对此,常识问答面临的一个挑战是如何找到合适的外部知识来帮助回答问题。现有的许多常识问答模型通常依赖于单个外部知识源,但鉴于常识知识的广泛性和多样性,单一来源很难全面覆盖所需的所有知识。针对这一问题,提出了一种基于多源知识注入的常识问答方法。首先,在知识查询过程中为了应对知识覆盖度问题,利用预训练语言模型整合来自多个来源的知识(包括结构化和非结构化的知识),形成统一的知识表征;其次,在知识推理过程中为了充分利用结构化知识蕴含的语义关系,模型识别文本中的实体概念和实体之间的关系路径从而构建实体关系图,然后,利用图注意力网络对实体关系图建模;最后,利用实体关系图和实体知识表征中的证据信息对问题进行推理和解答。所提方法经预训练得到的模型在CommonsenseQA数据集上的测试结果显示,基于多源知识注入的常识问答方法在验证集和测试集上的准确率分别达到79.20%和75.02%,超过了最好的基线模型。实验结果表明了多源知识注入方法在常识问答任务中的有效性。 展开更多
关键词 常识问答 知识注入 预训练语言模型 图神经网络 注意力机制
在线阅读 下载PDF
文本信息与图结构信息相融合的知识图谱补全 被引量:1
4
作者 范厚龙 房爱莲 林欣 《华东师范大学学报(自然科学版)》 北大核心 2025年第1期111-123,共13页
提出了一种基于路径查询信息的图注意力模型,可以将知识图谱中的文本信息与图结构信息有效融合,进而提高知识图谱的补全效果.对于文本信息,使用基于预训练语言模型的双编码器来分别获得实体的嵌入表示和路径查询信息的嵌入表示.通过注... 提出了一种基于路径查询信息的图注意力模型,可以将知识图谱中的文本信息与图结构信息有效融合,进而提高知识图谱的补全效果.对于文本信息,使用基于预训练语言模型的双编码器来分别获得实体的嵌入表示和路径查询信息的嵌入表示.通过注意力机制来进行路径查询信息的聚合,以捕获图结构信息,更新实体的嵌入表示.模型使用对比学习进行训练,在多个知识图谱数据集上进行实验,如直推式、归纳式的方式,都取得了良好的效果.结果表明,将预训练语言模型与图神经网络的优势相结合,可以有效捕获知识图谱中文本信息与图结构信息,进而提高知识图谱的补全效果. 展开更多
关键词 知识图谱补全 预训练语言模型 对比学习 图神经网络
在线阅读 下载PDF
结合语言模型双编码和坐标注意力卷积的知识图谱补全
5
作者 王瑄 王晓霞 陈晓 《计算机工程与应用》 北大核心 2025年第14期206-213,共8页
知识图谱补全(KGC)旨在学习知识图谱中的现有知识实现对缺失三元组的补全。近期的相关研究表明,将语言模型(LM)应用于KGC任务能够改善模型在结构稀疏的知识图谱上的推理性能。针对现有结合LM的KGC模型性能仅依赖于LM捕获的语义特征,没... 知识图谱补全(KGC)旨在学习知识图谱中的现有知识实现对缺失三元组的补全。近期的相关研究表明,将语言模型(LM)应用于KGC任务能够改善模型在结构稀疏的知识图谱上的推理性能。针对现有结合LM的KGC模型性能仅依赖于LM捕获的语义特征,没有同时考虑知识图谱的结构信息和语义信息的问题,提出一种结合语言模型双编码和坐标注意的知识图谱补全方法LDCA。在编码时,通过引入掩码预训练的语言模型双编码结构,充分学习实体和关系的语义特征;在解码时,使用坐标注意力机制的卷积神经网络捕获实体和关系组合嵌入的跨通道信息、方向感知信息和位置感知信息。在WN18RR和FB15K-237数据集上的实验结果表明,LDCA模型在MR、MRR、Hits@1、Hits@3和Hits@10上的整体性能优于基准模型,验证了所提出模型的有效性和先进性。 展开更多
关键词 语言模型(LM) 掩码预训练 坐标注意力机制 卷积神经网络
在线阅读 下载PDF
基于全局语义信息的GR-BERT模型
6
作者 王煜华 胡俊英 +2 位作者 孙凯 常培菊 费蓉蓉 《工程数学学报》 北大核心 2025年第4期751-762,共12页
关系抽取是提取实体间关系的一项重要的自然语言处理任务。最近的研究发现,预训练BERT模型在自然语言处理任务中取得了非常好的效果。此后,诞生了大量使用预训练BERT模型处理关系抽取任务的方法,其中具有代表性的是R-BERT方法。但是,该... 关系抽取是提取实体间关系的一项重要的自然语言处理任务。最近的研究发现,预训练BERT模型在自然语言处理任务中取得了非常好的效果。此后,诞生了大量使用预训练BERT模型处理关系抽取任务的方法,其中具有代表性的是R-BERT方法。但是,该方法在实现时未考虑主语实体与宾语实体在语义上的差异,以及全局语义信息对关系抽取任务准确性的影响。通过设置两个不同的全连接层来分别提取主语实体和宾语实体的信息,从而将主语实体与宾语实体在语义上的差异引入模型的学习过程中。此外,还在原有的信息融合模块后面添加了一层带有激活函数的新全连接层来将高维全局语义信息与实体对充分融合。将融合了语义差异与全局语义信息的R-BERT简称为GR-BERT。通过在中文人物关系抽取数据集上进行实验,结果表明新提出的GR-BERT的效果较原始R-BERT取得了显著提升,从而验证了新方法GR-BERT的有效性。 展开更多
关键词 BERT模型 自然语言处理 关系抽取 神经网络
在线阅读 下载PDF
基于图结构提示实现低资源场景下的节点分类
7
作者 陈宇灵 李翔 《计算机工程与科学》 北大核心 2025年第3期534-547,共14页
文本属性图时下逐渐成为图研究领域的一个热点。在传统的图神经网络研究中,所使用到的节点特征通常是由文本信息转化来的浅层特征或者是人为手动设计的特征,如跳字模型和连续词袋模型。近年来,随着大型语言模型的出现,自然语言处理方向... 文本属性图时下逐渐成为图研究领域的一个热点。在传统的图神经网络研究中,所使用到的节点特征通常是由文本信息转化来的浅层特征或者是人为手动设计的特征,如跳字模型和连续词袋模型。近年来,随着大型语言模型的出现,自然语言处理方向的研究发生了深刻的变革。这种变革不仅影响了自然语言处理的相关任务,还开始渗透到图神经网络。因此,最近的图工作中也开始引入语言表征模型和大语言模型用于生成新的节点表征,旨在进一步挖掘更加丰富的语义信息。在现有的工作中,大多数模型还是采用传统GNN架构或对比学习的方式。在对比学习一类的方法中,由于传统节点特征和语言模型生成的节点表征并不是由统一的模型生成的,因此这类方法面临着处理2个位于不同向量空间的向量的挑战。基于以上的挑战和考量,提出一个名为GRASS的模型。具体来说,模型在预训练任务中引入了通过大语言模型扩充得到的文本信息,对其与经过图卷积的文本信息进行对比学习;在下游任务中,为了减少微调的成本,GRASS对齐了下游任务和预训练任务的形式。通过这个模型,使得GRASS在不需要微调的情况下,能够在节点分类任务上表现良好,尤其是在小样本场景下。例如,在1-shot场景下,比起最优基准模型,GRASS在Cora,Pubmed和ogbn-arxiv数据集上的准确度分别提升了6.10%,6.22%和5.21%。 展开更多
关键词 图神经网络 文本属性图 大语言模型 对比学习 预训练 提示学习
在线阅读 下载PDF
基于双通道特征融合的微博情感分析 被引量:1
8
作者 胥桂仙 王家诚 +1 位作者 张廷 田媛 《东北师大学报(自然科学版)》 CAS 北大核心 2024年第4期62-71,共10页
提出一种基于双通道特征融合的微博情感分析模型.首先将通过BERT预训练语言模型获取的动态词向量作为情感分类模型的输入;然后使用双通道特征提取网络进行特征提取,一方面使用TextCNN-Attention提取文本局部特征,另一方面使用基于图卷... 提出一种基于双通道特征融合的微博情感分析模型.首先将通过BERT预训练语言模型获取的动态词向量作为情感分类模型的输入;然后使用双通道特征提取网络进行特征提取,一方面使用TextCNN-Attention提取文本局部特征,另一方面使用基于图卷积神经网络的神经主题模型提取文本全局主题特征;接着将局部特征和全局特征融合得到最终的文本向量;最后通过Softmax输出情感极性.在构建的微博评论文本数据集上进行实验,本文模型F1值达到91.36%,相比主流基线模型提升0.73%~8.82%,验证了本文模型在情感分析任务上的有效性. 展开更多
关键词 情感分析 预训练语言模型 图卷积神经网络 神经主题模型 特征融合
在线阅读 下载PDF
融合大模型与图神经网络的电力设备缺陷诊断 被引量:8
9
作者 李莉 时榕良 +1 位作者 郭旭 蒋洪鑫 《计算机科学与探索》 CSCD 北大核心 2024年第10期2643-2655,共13页
电力系统中不同装置设备的缺陷评级和分析处理常受运维人员主观性影响,导致同一缺陷文本描述出现不同的严重程度评级。专业知识的差异也导致诊断分析差异和诊断效率不同。为提升缺陷诊断的准确性和效率,提出一种基于图神经网络的缺陷文... 电力系统中不同装置设备的缺陷评级和分析处理常受运维人员主观性影响,导致同一缺陷文本描述出现不同的严重程度评级。专业知识的差异也导致诊断分析差异和诊断效率不同。为提升缺陷诊断的准确性和效率,提出一种基于图神经网络的缺陷文本评级分类方法和大模型智能诊断分析助手。构建专业词典,使用自然语言处理算法规范化文本描述。通过统计方法,优化缺陷文本的语义表示。集成图注意力神经网络和RoBERTa模型对缺陷文本进行精确评级分类。基于大语言模型Qwen1.5-14B-Chat进行低秩适配(LoRA)微调训练得到电力设备诊断大模型Qwen-ElecDiag,结合检索增强生成技术开发设备缺陷诊断助手。此外,整理提供微调电力设备诊断大模型的指令数据集。对比实验结果表明,提出的基于图神经网络的缺陷评级分类方法在准确性上较最优基准模型BERT提升近8个百分点;诊断助手的电力知识以及缺陷诊断能力得到提升。通过提高缺陷评级的准确率并提供全面专业化诊断建议,不仅提高电力设备运维的智能化水平,也为其他垂直领域的智能运维提供新的解决方案。 展开更多
关键词 电力系统 缺陷诊断 图神经网络 大语言模型 低秩适配(LoRA)微调 检索增强生成 智能运维
在线阅读 下载PDF
大型语言模型:原理、实现与发展 被引量:23
10
作者 舒文韬 李睿潇 +2 位作者 孙天祥 黄萱菁 邱锡鹏 《计算机研究与发展》 EI CSCD 北大核心 2024年第2期351-361,共11页
近年来,大型语言模型的出现和发展对自然语言处理和人工智能领域产生了变革性影响.随着不断增大模型参数量和训练数据量,语言模型的文本建模困惑度以可预测的形式降低,在各类自然语言处理任务上的表现也持续提升.因此,增加语言模型的参... 近年来,大型语言模型的出现和发展对自然语言处理和人工智能领域产生了变革性影响.随着不断增大模型参数量和训练数据量,语言模型的文本建模困惑度以可预测的形式降低,在各类自然语言处理任务上的表现也持续提升.因此,增加语言模型的参数和数据规模成为提升系统智能水平富有前景的途径.首先回顾了大型语言模型的基本定义,从模型表现和算力需求的角度给出了“大型”语言模型的界定标准.其次,从数据、算法、模型3个维度梳理了大型语言模型的发展历程及规律,展示了不同阶段各个维度的规模化如何推动语言模型的发展.接着,考察了大型语言模型所表现出的涌现能力,介绍了思维链、情景学习和指令遵循等关键涌现能力的相关研究和应用现状.最后,展望了大型语言模型的未来发展和技术挑战. 展开更多
关键词 自然语言处理 神经网络 大型语言模型 预训练 对齐
在线阅读 下载PDF
基于掩码提示与门控记忆网络校准的关系抽取方法 被引量:2
11
作者 魏超 陈艳平 +2 位作者 王凯 秦永彬 黄瑞章 《计算机应用》 CSCD 北大核心 2024年第6期1713-1719,共7页
针对关系抽取(RE)任务中实体关系语义挖掘困难和预测关系有偏差等问题,提出一种基于掩码提示与门控记忆网络校准(MGMNC)的RE方法。首先,利用提示中的掩码学习实体之间在预训练语言模型(PLM)语义空间中的潜在语义,通过构造掩码注意力权... 针对关系抽取(RE)任务中实体关系语义挖掘困难和预测关系有偏差等问题,提出一种基于掩码提示与门控记忆网络校准(MGMNC)的RE方法。首先,利用提示中的掩码学习实体之间在预训练语言模型(PLM)语义空间中的潜在语义,通过构造掩码注意力权重矩阵,将离散的掩码语义空间相互关联;其次,采用门控校准网络将含有实体和关系语义的掩码表示融入句子的全局语义;再次,将它们作为关系提示校准关系信息,随后将句子表示的最终表示映射至相应的关系类别;最后,通过更好地利用提示中掩码,并结合传统微调方法的学习句子全局语义的优势,充分激发PLM的潜力。实验结果表明,所提方法在SemEval(SemEval-2010 Task 8)数据集的F1值达到91.4%,相较于RELA(Relation Extraction with Label Augmentation)生成式方法提高了1.0个百分点;在SciERC(Entities, Relations, and Coreference for Scientific knowledge graph construction)和CLTC(Chinese Literature Text Corpus)数据集上的F1值分别达到91.0%和82.8%。所提方法在上述3个数据集上均明显优于对比方法,验证了所提方法的有效性。相较于基于生成式的方法,所提方法实现了更优的抽取性能。 展开更多
关键词 关系抽取 掩码 门控神经网络 预训练语言模型 提示学习
在线阅读 下载PDF
基于掩码语言模型的中文BERT攻击方法 被引量:3
12
作者 张云婷 叶麟 +2 位作者 唐浩林 张宏莉 李尚 《软件学报》 EI CSCD 北大核心 2024年第7期3392-3409,共18页
对抗文本是一种能够使深度学习分类器作出错误判断的恶意样本,敌手通过向原始文本中加入人类难以察觉的微小扰动制作出能欺骗目标模型的对抗文本.研究对抗文本生成方法,能对深度神经网络的鲁棒性进行评价,并助力于模型后续的鲁棒性提升... 对抗文本是一种能够使深度学习分类器作出错误判断的恶意样本,敌手通过向原始文本中加入人类难以察觉的微小扰动制作出能欺骗目标模型的对抗文本.研究对抗文本生成方法,能对深度神经网络的鲁棒性进行评价,并助力于模型后续的鲁棒性提升工作.当前针对中文文本设计的对抗文本生成方法中,很少有方法将鲁棒性较强的中文BERT模型作为目标模型进行攻击.面向中文文本分类任务,提出一种针对中文BERT的攻击方法Chinese BERT Tricker.该方法使用一种汉字级词语重要性打分方法——重要汉字定位法;同时基于掩码语言模型设计一种包含两类策略的适用于中文的词语级扰动方法实现对重要词语的替换.实验表明,针对文本分类任务,所提方法在两个真实数据集上均能使中文BERT模型的分类准确率大幅下降至40%以下,且其多种攻击性能明显强于其他基线方法. 展开更多
关键词 深度神经网络 对抗样本 文本对抗攻击 中文BERT 掩码语言模型
在线阅读 下载PDF
基于BERT和TextCNN的智能制造成熟度评估方法 被引量:5
13
作者 张淦 袁堂晓 +1 位作者 汪惠芬 柳林燕 《计算机集成制造系统》 EI CSCD 北大核心 2024年第3期852-863,共12页
随着智能制造2025目标的临近,企业为了解自身能力水平纷纷加入到智能制造成熟度评估的行列中。然而,由于智能制造成熟度评估标准的复杂性,企业缺乏其对行业水平的了解,导致企业贸然申请,浪费自身时间的同时又占用大量评估资源。鉴于此,... 随着智能制造2025目标的临近,企业为了解自身能力水平纷纷加入到智能制造成熟度评估的行列中。然而,由于智能制造成熟度评估标准的复杂性,企业缺乏其对行业水平的了解,导致企业贸然申请,浪费自身时间的同时又占用大量评估资源。鉴于此,设计了一种新的评估流程,采用文本处理算法对整个评估过程进行了重构,通过利用国标文件中智能制造成熟度评估标准,将其作为训练集,采用基于预训练语言模型与文本神经网络(BERT+TextCNN)相结合的智能评估算法代替人工评估。在真实的企业智能制造数据集上的验证表明,当BERT+TextCNN评估模型在卷积核为[2,3,4]、迭代次数为6次、学习率为3e-5时,对智能制造成熟度进行评估,准确率达到85.32%。这表明所设计的评估方法能够较准确地帮助企业完成智能制造成熟度自评估,有助于企业了解自身智能制造能力水平,制定正确的发展方向。 展开更多
关键词 智能制造成熟度模型 BERT预训练语言模型 文本卷积神经网络 评估过程重构
在线阅读 下载PDF
基于ALBERT的中文简历命名实体识别 被引量:6
14
作者 余丹丹 黄洁 +1 位作者 党同心 张克 《计算机工程与设计》 北大核心 2024年第1期261-267,共7页
现有的电子简历实体识别方法准确率低,采用BERT预训练语言模型虽能取得较高的准确率,但BERT模型参数量过大,训练时间长,其实际应用场景受限,提出一种基于ALBERT的中文电子简历命名实体识别方法。通过轻量版ALBERT语言模型对输入文本进... 现有的电子简历实体识别方法准确率低,采用BERT预训练语言模型虽能取得较高的准确率,但BERT模型参数量过大,训练时间长,其实际应用场景受限,提出一种基于ALBERT的中文电子简历命名实体识别方法。通过轻量版ALBERT语言模型对输入文本进行词嵌入,获取动态词向量,解决一词多义的问题;使用BiLSTM获取上下文结构特征,深层次挖掘语义关系;将拼接后的向量输入到CRF层进行维特比解码,学习标签间约束关系,输出正确标签。实验结果表明,该方法在Resume电子简历数据集中取得了94.86%的F1值。 展开更多
关键词 电子简历 命名实体识别 预训练语言模型 双向长短时记忆网络 条件随机场 神经网络 深度学习
在线阅读 下载PDF
基于文本图神经网络的小样本文本分类技术研究 被引量:1
15
作者 安相成 刘保柱 甘精伟 《河北科技大学学报》 CAS 北大核心 2024年第1期52-58,共7页
为了解决文本图神经网络小样本文本分类精度较差的问题,设计了基于文本图神经网络的原型网络,采用预训练语言模型,利用文本级图神经网络为每个输入文本构建图并共享全局参数,将文本图神经网络的结果作为原型网络的输入,对未标注文本进... 为了解决文本图神经网络小样本文本分类精度较差的问题,设计了基于文本图神经网络的原型网络,采用预训练语言模型,利用文本级图神经网络为每个输入文本构建图并共享全局参数,将文本图神经网络的结果作为原型网络的输入,对未标注文本进行分类,并验证新模型在多个文本分类数据集上的有效性。实验结果表明,与需要大量标注文档的监督学习方法相比,所采用的方法未标注文本的分类精度提高了1%~3%,在多个文本分类数据集上验证了新模型性能先进,内存占用更少。研究结果可为解决小样本文本分类问题提供参考。 展开更多
关键词 自然语言处理 小样本文本分类 预训练模型 图神经网络 原型网络
在线阅读 下载PDF
融合大语言模型与图结构的招商风险分析算法 被引量:1
16
作者 吕晓斌 唐远泉 +4 位作者 苏怀强 赵茂瑶 席凤正 周鑫 何亚 《计算机应用》 CSCD 北大核心 2024年第S2期7-11,共5页
在企业的招商引资过程中,存在多维度的风险。传统的风险评估方法由于信息失真以及经济行为中的复杂关系,难以及时且准确地识别这些风险。为解决上述问题,提出一种将大型语言模型(LLM)与图神经网络(GNN)融合的风险分析框架。利用LLM的语... 在企业的招商引资过程中,存在多维度的风险。传统的风险评估方法由于信息失真以及经济行为中的复杂关系,难以及时且准确地识别这些风险。为解决上述问题,提出一种将大型语言模型(LLM)与图神经网络(GNN)融合的风险分析框架。利用LLM的语义理解能力,辅助GNN构建全面、准确的动态企业异构知识图谱,从而解决静态数据引起的信息失真问题。在此基础上,针对GNN在深度和语义表达能力上的不足,设计一个基于知识的语义结构挖掘模块,并结合Qwen2大模型增强节点表示的语义精准性。此外,提出一体化图(IOG)模块将节点分类与图分类任务统一为对“关注节点”的预测。通过统一预测机制,实现对不同图结构类型的预测,从而显著提升模型在不同数据集上的泛化能力。基于该框架构建的IOG-CIQAN(In One Graph with Collective Intelligence and Qwen2 Assistance Network)模型在劳工、财务、行政这3个风险分析数据集上的准确率均超过了87%,优于胶囊网络(CapsNet)等多种基线模型。 展开更多
关键词 图神经网络 大语言模型 图结构感知 企业风险预测 图结构统一表示
在线阅读 下载PDF
基于大语言模型的命名实体识别研究进展 被引量:9
17
作者 梁佳 张丽萍 +2 位作者 闫盛 赵宇博 张雅雯 《计算机科学与探索》 CSCD 北大核心 2024年第10期2594-2615,共22页
命名实体识别旨在从非结构化的文本中识别出命名实体及类型,是问答系统、机器翻译、知识图谱构建等自然语言处理技术中一项重要的基础任务。随着人工智能技术的发展,基于大语言模型的命名实体识别技术成为一大研究热点。对基于大语言模... 命名实体识别旨在从非结构化的文本中识别出命名实体及类型,是问答系统、机器翻译、知识图谱构建等自然语言处理技术中一项重要的基础任务。随着人工智能技术的发展,基于大语言模型的命名实体识别技术成为一大研究热点。对基于大语言模型的命名实体识别最新研究进展进行综述,概述大语言模型和命名实体识别的发展历程,简要介绍命名实体识别任务常用的数据集和评估方法,从基于规则和字典、基于统计机器学习和基于深度学习的命名实体识别方法这三方面对目前传统命名实体识别研究工作进行梳理。按照模型架构详细阐述不同大语言模型如何应用于不同领域的命名实体识别任务,并对存在的问题和改进的方向进行分析。总结当前基于大语言模型的命名实体识别任务面临的挑战,并展望未来的研究方向。 展开更多
关键词 大语言模型 命名实体识别 神经网络 深度学习
在线阅读 下载PDF
基于RoBERTa-RCNN和注意力池化的新闻主题文本分类 被引量:4
18
作者 王乾 曾诚 +2 位作者 何鹏 张海丰 余新言 《郑州大学学报(理学版)》 CAS 北大核心 2024年第2期43-50,共8页
针对中文新闻主题因缺乏上下文信息而造成语义模糊和用词规范性不高的问题,提出一种基于RoBERTa-RCNN和多头注意力池化机制的新闻主题文本分类方法。利用数据增强技术对部分训练数据进行回译处理,再通过自编码预训练模型和RCNN对文本进... 针对中文新闻主题因缺乏上下文信息而造成语义模糊和用词规范性不高的问题,提出一种基于RoBERTa-RCNN和多头注意力池化机制的新闻主题文本分类方法。利用数据增强技术对部分训练数据进行回译处理,再通过自编码预训练模型和RCNN对文本进行初步和深度的特征提取,并结合多头注意力思想改进最大池化层。该方法采用融合机制,改善了RCNN中最大池化策略单一和无法进行动态优化的缺陷。在三个新闻主题数据集上进行实验,使用更适用于新闻主题分类的Mish函数代替ReLU函数,并利用标签平滑来解决过拟合问题。结果表明,所提方法相比传统分类方法效果突出,并通过消融实验验证了模型在分类任务上的可行性。 展开更多
关键词 预训练语言模型 文本分类 循环卷积神经网络 注意力机制 标签平滑 数据增强
在线阅读 下载PDF
融合事理知识的群体性事件演化预测
19
作者 张敏跃 罗蓉 胡珀 《情报杂志》 CSSCI 北大核心 2024年第11期158-164,共7页
[研究目的]当前,由社会矛盾和冲突所引发的网络群体性事件对公共安全构成了严重威胁,预测群体性事件的演化趋势对提升社会危机的防范与治理能力至关重要。[研究方法]提出了一种融合事理知识的群体性事件演化预测方法。该方法首先利用大... [研究目的]当前,由社会矛盾和冲突所引发的网络群体性事件对公共安全构成了严重威胁,预测群体性事件的演化趋势对提升社会危机的防范与治理能力至关重要。[研究方法]提出了一种融合事理知识的群体性事件演化预测方法。该方法首先利用大语言模型蕴含的丰富事件知识及模型强大的生成能力来构建初始的事理图谱,通过结合真实新闻报道来验证图谱内容;其次,将事理图谱与图神经网络模型相结合,以获得更充分的事件语义表示;最后,基于上下文事件与候选事件间的语义相似度来预测未来可能发生的事件。[研究结论]研究表明,所提方法在事件演化预测的准确性和可解释性方面均显著优于参与比较的其他方法,验证了事理知识融合对揭示群体性事件演化模式的可行性和有效性。 展开更多
关键词 群体性事件 事件预测 事理图谱 事理知识融合 大语言模型 图神经网络
在线阅读 下载PDF
面向数据可视化的自然语言接口研究综述
20
作者 高帅 奚雪峰 +2 位作者 郑倩 崔志明 盛胜利 《计算机工程与应用》 CSCD 北大核心 2024年第15期24-41,共18页
数据可视化领域长期以来的目标是寻找直接从自然语言生成可视化的解决方案,而自然语言接口(NLI)的研究为该领域提供了新的解决办法。该接口接受自然语言形式的查询和表格数据集作为输入,并输出与之对应的可视化渲染。在作为一种辅助输... 数据可视化领域长期以来的目标是寻找直接从自然语言生成可视化的解决方案,而自然语言接口(NLI)的研究为该领域提供了新的解决办法。该接口接受自然语言形式的查询和表格数据集作为输入,并输出与之对应的可视化渲染。在作为一种辅助输入方式的同时,传统用户需将分析意图转化为一系列逻辑操作并与之进行交互(如编程指令或图形化界面操作方式等),与利用面向数据可视化的自然语言接口(DV-NLI)相结合,能够使用户专注于可视化任务,而无需担心如何操作可视化工具。近年来,随着大语言模型(LLM)GPT-3、GPT-4的兴起,将LLM与可视化相结合已成为研究热点。对现有的DV-NLI进行了全面的回顾,并进行了新的研究补充。按照其实现方法,将DV-NLI分为符号化NLP方法、深度学习模型方法、大语言模型方法三类,对每个分类下的相关技术进行分析论述。最后,总结并展望DV-NLI的未来工作。 展开更多
关键词 数据可视化 自然语言接口 机器学习 神经网络模型 大语言模型
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部