In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of th...In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of the space target inverse synthetic aperture radar(ISAR)image recognition model with ultra-lightweight and high accuracy.This method introduces the NAS method into the radar image recognition for the first time,which solves the time-consuming and labor-consuming problems in the artificial design of the space target ISAR image automatic recognition model(STIIARM).On this basis,the NAS model’s knowledge is transferred to the student model with lower computational complexity by the flow of the solution procedure(FSP)distillation method.Thus,the decline of recognition accuracy caused by the direct compression of model structural parameters can be effectively avoided,and the ultralightweight STIIARM can be obtained.In the method,the Inverted Linear Bottleneck(ILB)and Inverted Residual Block(IRB)are firstly taken as each block’s basic structure in CNN.And the expansion ratio,output filter size,number of IRBs,and convolution kernel size are set as the search parameters to construct a hierarchical decomposition search space.Then,the recognition accuracy and computational complexity are taken as the objective function and constraint conditions,respectively,and the global optimization model of the CNN architecture search is established.Next,the simulated annealing(SA)algorithm is used as the search strategy to search out the lightweight and high accuracy STIIARM directly.After that,based on the three principles of similar block structure,the same corresponding channel number,and the minimum computational complexity,the more lightweight student model is designed,and the FSP matrix pairing between the NAS model and student model is completed.Finally,by minimizing the loss between the FSP matrix pairs of the NAS model and student model,the student model’s weight adjustment is completed.Thus the ultra-lightweight and high accuracy STIIARM is obtained.The proposed method’s effectiveness is verified by the simulation experiments on the ISAR image dataset of five types of space targets.展开更多
It well known that vehicle detection is an important component of the field of object detection.However,the environment of vehicle detection is particularly sophisticated in practical processes.It is comparatively dif...It well known that vehicle detection is an important component of the field of object detection.However,the environment of vehicle detection is particularly sophisticated in practical processes.It is comparatively difficult to detect vehicles of various scales in traffic scene images,because the vehicles partially obscured by green belts,roadblocks or other vehicles,as well as influence of some low illumination weather.In this paper,we present a model based on Faster ReCNN with NAS optimization and feature enrichment to realize the effective detection of multi-scale vehicle targets in traffic scenes.First,we proposed a Retinex-based image adaptive correction algorithm(RIAC)to enhance the traffic images in the dataset to reduce the influence of shadow and illumination,and improve the image quality.Second,in order to improve the feature expression of the backbone network,we conducted Neural Architecture Search(NAS)on the backbone network used for feature extraction of Faster ReCNN to generate the optimal cross-layer connection to extract multi-layer features more effectively.Third,we used the object Feature Enrichment that combines the multi-layer feature information and the context information of the last layer after cross-layer connection to enrich the information of vehicle targets,and improve the robustness of the model for challenging targets such as small scale and severe occlusion.In the implementation of the model,K-means clustering algorithm was used to select the suitable anchor size for our dataset to improve the convergence speed of the model.Our model has been trained and tested on the UN-DETRAC dataset,and the obtained results indicate that our method has art-of-state detection performance.展开更多
文摘In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of the space target inverse synthetic aperture radar(ISAR)image recognition model with ultra-lightweight and high accuracy.This method introduces the NAS method into the radar image recognition for the first time,which solves the time-consuming and labor-consuming problems in the artificial design of the space target ISAR image automatic recognition model(STIIARM).On this basis,the NAS model’s knowledge is transferred to the student model with lower computational complexity by the flow of the solution procedure(FSP)distillation method.Thus,the decline of recognition accuracy caused by the direct compression of model structural parameters can be effectively avoided,and the ultralightweight STIIARM can be obtained.In the method,the Inverted Linear Bottleneck(ILB)and Inverted Residual Block(IRB)are firstly taken as each block’s basic structure in CNN.And the expansion ratio,output filter size,number of IRBs,and convolution kernel size are set as the search parameters to construct a hierarchical decomposition search space.Then,the recognition accuracy and computational complexity are taken as the objective function and constraint conditions,respectively,and the global optimization model of the CNN architecture search is established.Next,the simulated annealing(SA)algorithm is used as the search strategy to search out the lightweight and high accuracy STIIARM directly.After that,based on the three principles of similar block structure,the same corresponding channel number,and the minimum computational complexity,the more lightweight student model is designed,and the FSP matrix pairing between the NAS model and student model is completed.Finally,by minimizing the loss between the FSP matrix pairs of the NAS model and student model,the student model’s weight adjustment is completed.Thus the ultra-lightweight and high accuracy STIIARM is obtained.The proposed method’s effectiveness is verified by the simulation experiments on the ISAR image dataset of five types of space targets.
基金This research was funded by the National Natural Science Foundation of China(grant number:61671470)the Key Research and Development Program of China(grant number:2016YFC0802900).
文摘It well known that vehicle detection is an important component of the field of object detection.However,the environment of vehicle detection is particularly sophisticated in practical processes.It is comparatively difficult to detect vehicles of various scales in traffic scene images,because the vehicles partially obscured by green belts,roadblocks or other vehicles,as well as influence of some low illumination weather.In this paper,we present a model based on Faster ReCNN with NAS optimization and feature enrichment to realize the effective detection of multi-scale vehicle targets in traffic scenes.First,we proposed a Retinex-based image adaptive correction algorithm(RIAC)to enhance the traffic images in the dataset to reduce the influence of shadow and illumination,and improve the image quality.Second,in order to improve the feature expression of the backbone network,we conducted Neural Architecture Search(NAS)on the backbone network used for feature extraction of Faster ReCNN to generate the optimal cross-layer connection to extract multi-layer features more effectively.Third,we used the object Feature Enrichment that combines the multi-layer feature information and the context information of the last layer after cross-layer connection to enrich the information of vehicle targets,and improve the robustness of the model for challenging targets such as small scale and severe occlusion.In the implementation of the model,K-means clustering algorithm was used to select the suitable anchor size for our dataset to improve the convergence speed of the model.Our model has been trained and tested on the UN-DETRAC dataset,and the obtained results indicate that our method has art-of-state detection performance.