The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and co...The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm.展开更多
The conception of the normalized reliability index weighted by capacity is introduced, which combing the communication capacity, the reliability probability of exchange nodes and the reliability probability of the tra...The conception of the normalized reliability index weighted by capacity is introduced, which combing the communication capacity, the reliability probability of exchange nodes and the reliability probability of the transmission links, in order to estimate the reliability performance of communication network comprehensively and objectively. To realize the full algebraic calculation, the key problem should be resolved, which is to find an algorithm to calculate all the routes between nodes of a network. A kind of logic algebraic algorithm of network routes is studied and based on this algorithm, the full algebraic algorithm of normalized reliability index weighted by capacity is studied. For this algorithm, it is easy to design program and the calculation of reliability index is finished, which is the foundation of the comprehensive and objective estimation of communication networks. The calculation procedure of the algorithm is introduced through typical examples and the results verify the algorithm.展开更多
A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similar...A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similarity, which enhances the diversity of initial individuals while retaining an acceptable level of accuracy, and improves the efficiency of optimal solution search. Individual crossover is based on the quality of individuals' genes; all nodes unassigned to any community are grouped into a new community, while ambiguously placed nodes are assigned to the community to which most of their neighbors belong. Individual mutation, which splits a gene into two new genes or randomly fuses it into other genes, is non-uniform. The simplicity and effectiveness of the algorithm are revealed in experimental tests using artificial random networks and real networks. The accuracy of the algorithm is superior to that of some classic algorithms, and is comparable to that of some recent high-precision algorithms.展开更多
A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Suge...A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.展开更多
A method for improving the level of reliability of distribution systems is presented by employing an integrated voltage sag mitigation method that comprises a two-staged strategy,namely,distribution network reconfigur...A method for improving the level of reliability of distribution systems is presented by employing an integrated voltage sag mitigation method that comprises a two-staged strategy,namely,distribution network reconfiguration(DNR)followed by DSTATCOM placement.Initially,an optimal DNR is applied to reduce the propagated voltage sags during the test period.The second stage involves optimal placement of the DSTATCOM to assist the already reconfigured network.The gravitational search algorithm is used in the process of optimal DNR and in placing DSTATCOM.Reliability assessment is performed using the well-known indices.The simulation results show that the proposed method is efficient and feasible for improving the level of system reliability.展开更多
Cloud manufacturing is a specific implementation form of the "Internet + manufacturing" strategy. Why and how to develop cloud manufacturing platform(CMP), however, remains the key concern of both platform o...Cloud manufacturing is a specific implementation form of the "Internet + manufacturing" strategy. Why and how to develop cloud manufacturing platform(CMP), however, remains the key concern of both platform operators and users. A microscopic model is proposed to investigate advantages and diffusion forces of CMP through exploration of its diffusion process and mechanism. Specifically, a three-stage basic evolution process of CMP is innovatively proposed. Then, based on this basic process, a more complex CMP evolution model has been established in virtue of complex network theory, with five diffusion forces identified. Thereafter, simulations on CMP diffusion have been conducted. The results indicate that, CMP possesses better resource utilization,user satisfaction, and enterprise utility. Results of simulation on impacts of different diffusion forces show that both the time required for CMP to reach an equilibrium state and the final network size are affected simultaneously by the five diffusion forces. All these analyses indicate that CMP could create an open online cooperation environment and turns out to be an effective implementation of the "Internet + manufacturing" strategy.展开更多
A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation ...A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.展开更多
The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMM...The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMMCN reliabilities evaluation and multi-objective transmission lines assignment optimization. First, a reliability evaluation with a transmission line assignment (RETLA) algorithm is proposed to calculate the MMMCN reliabilities under the cost constraint for a certain transmission lines configuration. Second, the non-dominated sorting genetic algorithm II (NSGA-II) is adopted to find the non-dominated set of the transmission lines assignments based on the reliabilities obtained from the RETLA algorithm. By combining the RETLA and the NSGA-II algorithms together, the RETLA-NSGA II algorithm is proposed to solve the OTLAMR problem. The experiments result show that the RETLA-NSGA II algorithm can provide efficient solutions in a reasonable time, from which the decision makers can choose the best solution based on their preferences and experiences.展开更多
To complete the contact fatigue reliability analysis of spur gear under elastohydrodynamic lubrication(EHL) efficiently and accurately, an intelligent method is proposed. Oil film pressure is approximated using quadra...To complete the contact fatigue reliability analysis of spur gear under elastohydrodynamic lubrication(EHL) efficiently and accurately, an intelligent method is proposed. Oil film pressure is approximated using quadratic polynomial with intercrossing term and then mapped into the Hertz contact zone. Considering the randomness of the EHL, material properties and fatigue strength correction factors, the probabilistic reliability analysis model is established using artificial neural network(ANN). Genetic algorithm(GA) is employed to search the minimum reliability index and the design point by introducing an adjusting factor in penalty function. Reliability sensitivity analysis is completed based on the advanced first order second moment(AFOSM). Numerical example shows that the established probabilistic reliability analysis model could correctly reflect the effect of EHL on contact fatigue of spur gear, and the proposed intelligent method has an excellent global search capability as well as a highly efficient computing performance compared with the traditional Monte Carlo method(MCM).展开更多
为全面提取节点的全局特征,提高复杂网络关键节点识别结果的准确性,提出一种基于改进DDQN(double deep Q-network)算法的复杂网络关键节点识别方法。通过重构DDQN的初始奖励值、引入回退探索和优先访问方法,改进DDQN算法,提取节点全局特...为全面提取节点的全局特征,提高复杂网络关键节点识别结果的准确性,提出一种基于改进DDQN(double deep Q-network)算法的复杂网络关键节点识别方法。通过重构DDQN的初始奖励值、引入回退探索和优先访问方法,改进DDQN算法,提取节点全局特征,从而提升全局特征提取的效率和提取结果的准确性。引入聚类系数获取节点的局部特征,通过网络性能均值实验得到全局特征和局部特征的融合参数,对全局特征和局部特征进行融合,得到节点的重要度排序,从而实现关键节点识别。在7个真实网络数据集上的实验结果表明,此方法在基于网络性能均值的评价指标以及SIR模型上均优于对比的基线方法。证明其可以更全面地提取节点全局特征,更准确地识别关键节点。展开更多
基金supported by the National Natural Science Foundation of China(51875465)
文摘The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm.
文摘The conception of the normalized reliability index weighted by capacity is introduced, which combing the communication capacity, the reliability probability of exchange nodes and the reliability probability of the transmission links, in order to estimate the reliability performance of communication network comprehensively and objectively. To realize the full algebraic calculation, the key problem should be resolved, which is to find an algorithm to calculate all the routes between nodes of a network. A kind of logic algebraic algorithm of network routes is studied and based on this algorithm, the full algebraic algorithm of normalized reliability index weighted by capacity is studied. For this algorithm, it is easy to design program and the calculation of reliability index is finished, which is the foundation of the comprehensive and objective estimation of communication networks. The calculation procedure of the algorithm is introduced through typical examples and the results verify the algorithm.
文摘A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similarity, which enhances the diversity of initial individuals while retaining an acceptable level of accuracy, and improves the efficiency of optimal solution search. Individual crossover is based on the quality of individuals' genes; all nodes unassigned to any community are grouped into a new community, while ambiguously placed nodes are assigned to the community to which most of their neighbors belong. Individual mutation, which splits a gene into two new genes or randomly fuses it into other genes, is non-uniform. The simplicity and effectiveness of the algorithm are revealed in experimental tests using artificial random networks and real networks. The accuracy of the algorithm is superior to that of some classic algorithms, and is comparable to that of some recent high-precision algorithms.
文摘A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.
基金Project(DIP-2012-30)supported by the Universiti Kebangsaan,Malaysia
文摘A method for improving the level of reliability of distribution systems is presented by employing an integrated voltage sag mitigation method that comprises a two-staged strategy,namely,distribution network reconfiguration(DNR)followed by DSTATCOM placement.Initially,an optimal DNR is applied to reduce the propagated voltage sags during the test period.The second stage involves optimal placement of the DSTATCOM to assist the already reconfigured network.The gravitational search algorithm is used in the process of optimal DNR and in placing DSTATCOM.Reliability assessment is performed using the well-known indices.The simulation results show that the proposed method is efficient and feasible for improving the level of system reliability.
基金supported by the National High-Tech R&D Program,China(2015AA042101)
文摘Cloud manufacturing is a specific implementation form of the "Internet + manufacturing" strategy. Why and how to develop cloud manufacturing platform(CMP), however, remains the key concern of both platform operators and users. A microscopic model is proposed to investigate advantages and diffusion forces of CMP through exploration of its diffusion process and mechanism. Specifically, a three-stage basic evolution process of CMP is innovatively proposed. Then, based on this basic process, a more complex CMP evolution model has been established in virtue of complex network theory, with five diffusion forces identified. Thereafter, simulations on CMP diffusion have been conducted. The results indicate that, CMP possesses better resource utilization,user satisfaction, and enterprise utility. Results of simulation on impacts of different diffusion forces show that both the time required for CMP to reach an equilibrium state and the final network size are affected simultaneously by the five diffusion forces. All these analyses indicate that CMP could create an open online cooperation environment and turns out to be an effective implementation of the "Internet + manufacturing" strategy.
基金This project was supported by the National Natural Science Foundation (No. 69875010).
文摘A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.
基金Projects(61004074,61134001,21076179)supported by the National Natural Science Foundation of ChinaProject(2009BAG12A08)supported by the National Key Technology Support Program of China+1 种基金Project(2010QNA5001)supported by the Fundamental Research Funds for the Central Universities of ChinaProjects(2012AA06A404,2006AA04Z184)supported by the National High Technology Research and Development Program of China
文摘The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMMCN reliabilities evaluation and multi-objective transmission lines assignment optimization. First, a reliability evaluation with a transmission line assignment (RETLA) algorithm is proposed to calculate the MMMCN reliabilities under the cost constraint for a certain transmission lines configuration. Second, the non-dominated sorting genetic algorithm II (NSGA-II) is adopted to find the non-dominated set of the transmission lines assignments based on the reliabilities obtained from the RETLA algorithm. By combining the RETLA and the NSGA-II algorithms together, the RETLA-NSGA II algorithm is proposed to solve the OTLAMR problem. The experiments result show that the RETLA-NSGA II algorithm can provide efficient solutions in a reasonable time, from which the decision makers can choose the best solution based on their preferences and experiences.
基金Project(CX2014B060) supported by Hunan Provincial Innovation for Postgraduate,ChinaProject(8130208) supported by General Armament Pre-research Foundation
文摘To complete the contact fatigue reliability analysis of spur gear under elastohydrodynamic lubrication(EHL) efficiently and accurately, an intelligent method is proposed. Oil film pressure is approximated using quadratic polynomial with intercrossing term and then mapped into the Hertz contact zone. Considering the randomness of the EHL, material properties and fatigue strength correction factors, the probabilistic reliability analysis model is established using artificial neural network(ANN). Genetic algorithm(GA) is employed to search the minimum reliability index and the design point by introducing an adjusting factor in penalty function. Reliability sensitivity analysis is completed based on the advanced first order second moment(AFOSM). Numerical example shows that the established probabilistic reliability analysis model could correctly reflect the effect of EHL on contact fatigue of spur gear, and the proposed intelligent method has an excellent global search capability as well as a highly efficient computing performance compared with the traditional Monte Carlo method(MCM).
文摘为全面提取节点的全局特征,提高复杂网络关键节点识别结果的准确性,提出一种基于改进DDQN(double deep Q-network)算法的复杂网络关键节点识别方法。通过重构DDQN的初始奖励值、引入回退探索和优先访问方法,改进DDQN算法,提取节点全局特征,从而提升全局特征提取的效率和提取结果的准确性。引入聚类系数获取节点的局部特征,通过网络性能均值实验得到全局特征和局部特征的融合参数,对全局特征和局部特征进行融合,得到节点的重要度排序,从而实现关键节点识别。在7个真实网络数据集上的实验结果表明,此方法在基于网络性能均值的评价指标以及SIR模型上均优于对比的基线方法。证明其可以更全面地提取节点全局特征,更准确地识别关键节点。