期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
血清HBsAg感染的Vis-NIR光谱模式识别研究
1
作者 高乔基 吴振邦 +6 位作者 徐茜 陈敏 刘文轩 曹诚诚 廖敬龙 欧超 潘涛 《分析测试学报》 北大核心 2025年第6期1016-1023,共8页
乙肝表面抗原(HBsAg)是乙肝病毒感染的重要标志物。该文建立了血清HBsAg感染的无试剂可见-近红外(Vis-NIR)光谱模式识别新方法。收集到临床血清样品1243例(HBsAg阳性601、阴性642),采用训练-预测-检验实验设计,搭建了基于多尺度卷积、压... 乙肝表面抗原(HBsAg)是乙肝病毒感染的重要标志物。该文建立了血清HBsAg感染的无试剂可见-近红外(Vis-NIR)光谱模式识别新方法。收集到临床血清样品1243例(HBsAg阳性601、阴性642),采用训练-预测-检验实验设计,搭建了基于多尺度卷积、压缩-激励网络(SE Net)注意力机制和多尺度膨胀卷积的新型卷积神经网络(CNN)集成算法,连同经典的偏最小二乘-判别分析(PLS-DA)和普通浅层CNN算法,被用于建立HBsAg阳性和阴性血清的Vis-NIR光谱判别模型。该研究采用标准正态变量(SNV)变换进行光谱预处理。基于近红外区(780~1118 nm)经SNV处理的光谱的PLS-DA模型和新型CNN模型取得更优的建模效果,新型CNN模型的灵敏度(SEN)达到99.3%,漏诊率(FNR)达到0.7%。结果表明,采用Vis-NIR光谱精准判别HBsAg阳性和阴性血清具有可行性,提出的新型深度学习算法可望应用于其他光谱分析领域。 展开更多
关键词 可见-近红外光谱模式识别 血清HBsAg感染判别 偏最小二乘-判别分析(PLS-DA) 卷积神经网络(CNN) SE net注意力机制 多尺度膨胀卷积
在线阅读 下载PDF
Self-potential inversion based on Attention U-Net deep learning network
2
作者 GUO You-jun CUI Yi-an +3 位作者 CHEN Hang XIE Jing ZHANG Chi LIU Jian-xin 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3156-3167,共12页
Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention an... Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring. 展开更多
关键词 SELF-POTENTIAL attention mechanism U-Net deep learning network INVERSION landfill
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部