期刊文献+
共找到179篇文章
< 1 2 9 >
每页显示 20 50 100
Satellite constellation design with genetic algorithms based on system performance
1
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithm(NSGA) pareto optimal set satellite constellation design surveillance performance
在线阅读 下载PDF
Optimal setting and placement of FACTS devices using strength Pareto multi-objective evolutionary algorithm 被引量:2
2
作者 Amin Safari Hossein Shayeghi Mojtaba Bagheri 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期829-839,共11页
This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for... This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems. 展开更多
关键词 STRENGTH pareto multi-objective evolutionary algorithm STATIC var COMPENSATOR (SVC) THYRISTOR controlled series capacitor (TCSC) STATIC voltage stability margin optimal location
在线阅读 下载PDF
Performance optimization of electric power steering based on multi-objective genetic algorithm 被引量:2
3
作者 赵万忠 王春燕 +1 位作者 于蕾艳 陈涛 《Journal of Central South University》 SCIE EI CAS 2013年第1期98-104,共7页
The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-obj... The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-objective genetic algorithm (GA) was designed. Based on the model of system, the quantitative formula of the road feel, sensitivity, and operation stability of the steering were induced. Considering the road feel and sensitivity of steering as optimization objectives, and the operation stability of steering as constraint, the multi-objective GA was proposed and the system parameters were optimized. The simulation results show that the system optimized by multi-objective genetic algorithm has better road feel, steering sensibility and steering stability. The energy of steering road feel after optimization is 1.44 times larger than the one before optimization, and the energy of portability after optimization is 0.4 times larger than the one before optimization. The ground test was conducted in order to verify the feasibility of simulation results, and it is shown that the pure electric bus equipped with the recirculating ball-type EPS system can provide better road feel and better steering portability for the drivers, thus the optimization methods can provide a theoretical basis for the design and optimization of the recirculating ball-type EPS system. 展开更多
关键词 vehicle engineering electric power steering multi-objective optimization genetic algorithm
在线阅读 下载PDF
Genetic algorithm for pareto optimum-based route selection 被引量:1
4
作者 Cui Xunxue Li Qin Tao Qing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期360-368,共9页
A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MC... A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MCP) problem, and has been proven to be NP-complete that cannot be exactly solved in a polynomial time. The NPC problem is converted into a multiobjective optimization problem with constraints to be solved with a genetic algorithm. Based on the Pareto optimum, a constrained routing computation method is proposed to generate a set of nondominated optimal routes with the genetic algorithm mechanism. The convergence and time complexity of the novel algorithm is analyzed. Experimental results show that multiobjective evolution is highly responsive and competent for the Pareto optimum-based route selection. When this method is applied to a MPLS and metropolitan-area network, it will be capable of optimizing the transmission performance. 展开更多
关键词 Route selection Multiobjective optimization pareto optimum Multi-constrained path genetic algorithm.
在线阅读 下载PDF
Overview of multi-objective optimization methods 被引量:2
5
作者 LeiXiujuan ShiZhongke 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第2期142-146,共5页
To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description ab... To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper. 展开更多
关键词 multi-objective optimization objective function pareto optimality genetic algorithms simulated annealing fuzzy logical.
在线阅读 下载PDF
Multi-objective design optimization of composite submerged cylindrical pressure hull for minimum buoyancy and maximum buckling load capacity 被引量:3
6
作者 Muhammad Imran Dong-yan Shi +3 位作者 Li-li Tong Ahsan Elahi Hafiz Muhammad Waqas Muqeem Uddin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1190-1206,共17页
This paper presents the design optimization of composite submersible cylindrical pressure hull subjected to 3 MPa hydrostatic pressure.The design optimization study is conducted for cross-ply layups[0_(s)/90_(t)/0_(u)... This paper presents the design optimization of composite submersible cylindrical pressure hull subjected to 3 MPa hydrostatic pressure.The design optimization study is conducted for cross-ply layups[0_(s)/90_(t)/0_(u)],[0_(s)/90_(t)/0_(u)]s,[0_(s)/90_(t)]s and[90_(s)/0_(t)]s considering three uni-directional composites,i.e.Carbon/Epoxy,Glass/Epoxy,and Boron/Epoxy.The optimization study is performed by coupling a Multi-Objective Genetic Algorithm(MOGA)and Analytical Analysis.Minimizing the buoyancy factor and maximizing the buckling load factor are considered as the objectives of the optimization study.The objectives of the optimization are achieved under constraints on the Tsai-Wu,Tsai-Hill and Maximum Stress composite failure criteria and on buckling load factor.To verify the optimization approach,optimization of one particular layup configuration is also conducted in ANSYS with the same objectives and constraints. 展开更多
关键词 multi-objective genetic algorithm optimization Composite submersible pressure hull Thin shell Material failure Shell buckling
在线阅读 下载PDF
Optimal transmission lines assignment with maximal reliabilities in multi-source multi-sink multi-state computer network 被引量:1
7
作者 章筠 徐正国 +2 位作者 王文海 卢建刚 孙优贤 《Journal of Central South University》 SCIE EI CAS 2013年第7期1868-1877,共10页
The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMM... The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMMCN reliabilities evaluation and multi-objective transmission lines assignment optimization. First, a reliability evaluation with a transmission line assignment (RETLA) algorithm is proposed to calculate the MMMCN reliabilities under the cost constraint for a certain transmission lines configuration. Second, the non-dominated sorting genetic algorithm II (NSGA-II) is adopted to find the non-dominated set of the transmission lines assignments based on the reliabilities obtained from the RETLA algorithm. By combining the RETLA and the NSGA-II algorithms together, the RETLA-NSGA II algorithm is proposed to solve the OTLAMR problem. The experiments result show that the RETLA-NSGA II algorithm can provide efficient solutions in a reasonable time, from which the decision makers can choose the best solution based on their preferences and experiences. 展开更多
关键词 multi-state network reliability evaluation transmission lines assignments multi-objective optimization non-dominatedsorting genetic algorithm II
在线阅读 下载PDF
Multi-objective Function Optimization for Environmental Control of a Greenhouse Based on a RBF and NSGA-Ⅱ
8
作者 Zhou Xiu-li Liu Ming-wei +3 位作者 Wang Ling Xu Xiao-chuan Chen Gang Wang De-fu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2021年第1期75-89,共15页
To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solve... To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively. 展开更多
关键词 greenhouse temperature multi-objective optimization radial-basis function(RBF) non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ)
在线阅读 下载PDF
A New Integrated Design Method Based on Fuzzy Matter-Element Optimization 被引量:5
9
作者 ZHAO Yan-wei 1, ZHANG Guo-xian 2 (1. College of Mechanical Engineering, Zhejiang University o f Technology, Hangzhou 310014, China 2. College of Mechanical & Electronic al Engineering, Shanghai University, Shanghai 200072, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期136-,共1页
This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element ... This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element weightily and changes solving multi-objective fuzzy optimization into solving dependent function K(x) of the single-objective optimization according to the optimization criterion. The paper particularly describes the realization approach of GA process of multi -objective fuzzy matter-element optimization: encode, produce initial populati on, confirm fitness function, select operator, etc. In the process, the adaptive macro genetic algorithms (AMGA) is applied to enhancing the evolution speed. Th e paper improves the two genetic operators: crossover and mutation operator. The modified adaptive macro genetic algorithms (MAMGA) is put forward simultane ously. It is adopted to solve the optimization problem. Three optimization methods, namely fuzzy matter-element optimization method, li nearity weighted method and fuzzy optimization method, are compared by using the table and figure, it shows that not only MAMGA is a little better than the AMGA , but also it reaches the extent to which the effective iteration generation is 62.2% of simple genetic algorithms (SGA). By the calculation of optimum exam ple, the improved method of genetic in the paper is much better than the method in reference of paper. 展开更多
关键词 multi-objective optimization fuzzy matter-elem ent genetic algorithms scheme design
在线阅读 下载PDF
Multi-objective planning model for simultaneous reconfiguration of power distribution network and allocation of renewable energy resources and capacitors with considering uncertainties 被引量:9
10
作者 Sajad Najafi Ravadanegh Mohammad Reza Jannati Oskuee Masoumeh Karimi 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1837-1849,共13页
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a... This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration. 展开更多
关键词 optimal reconfiguration renewable energy resources sitting and sizing capacitor allocation electric distribution system uncertainty modeling scenario based-stochastic programming multi-objective genetic algorithm
在线阅读 下载PDF
NSGA Ⅱ based multi-objective homing trajectory planning of parafoil system 被引量:1
11
作者 陶金 孙青林 +1 位作者 陈增强 贺应平 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3248-3255,共8页
Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a ki... Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system. 展开更多
关键词 parafoil system homing trajectory planning multi-objective optimization non-dominated sorting genetic algorithm(NSGA) non-uniform b-spline
在线阅读 下载PDF
基于层级分解的前围声学包多目标优化 被引量:1
12
作者 杨帅 吴宪 薛顺达 《振动与冲击》 北大核心 2025年第3期267-277,共11页
搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变... 搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变量范围,以PBNR(power based noise reduction)均值作为约束,以质量和成本作为优化目标,采用非支配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-II)进行多目标优化,得到Pareto多目标解集。并从中选取满足设计目标的最佳组合方案(材料组合、覆盖率、前围过孔密封方案选型)。结果显示,该模型最终的优化结果与实测结果接近,误差分别为0.35%,1.47%,1.82%,相较于初始声学包方案,优化后的结果显示,PBNR均值提升3.05%,其质量降低52.38%,成本降低15.15%,验证了所提方法的有效性和准确性。 展开更多
关键词 GAPSO-RBFNN 声学包 PBNR NSGA-II pareto多目标解集
在线阅读 下载PDF
混合变量多目标优化设计的Pareto遗传算法实现 被引量:20
13
作者 朱学军 攀登 +2 位作者 王安麟 张惠侨 叶庆泰 《上海交通大学学报》 EI CAS CSCD 北大核心 2000年第3期411-414,共4页
提出了一种用Pareto遗传算法来实施的带约束的多目标混合变量优化方法,得到Pareto最优解集,决策者从中可选出满足设计需要的解.该算法包括6个基本算子:选择、变异、交叉、离散变量圆整算子、小生境、Pareto集合过滤器.建立了用于多目标... 提出了一种用Pareto遗传算法来实施的带约束的多目标混合变量优化方法,得到Pareto最优解集,决策者从中可选出满足设计需要的解.该算法包括6个基本算子:选择、变异、交叉、离散变量圆整算子、小生境、Pareto集合过滤器.建立了用于多目标优化的适应度函数,使用模糊罚函数法将带约束的多目标优化问题转换为无约束优化问题,同时提出了处理混合变量多目标优化问题中离散变量的方法. 展开更多
关键词 混合变量 pareto最优 遗传算法 多目标优化设计
在线阅读 下载PDF
多目标配电网故障定位的Pareto进化算法 被引量:15
14
作者 孙国强 卫志农 +2 位作者 唐利锋 李育燕 缪立恒 《电力自动化设备》 EI CSCD 北大核心 2012年第5期57-61,73,共6页
提出一种用于配电网故障定位的多目标优化模型,采用带精英策略的快速非支配排序遗传算法(NSGA-II)进行求解。传统多目标优化问题通过加权方式转换为单目标问题,对权值比较敏感,且每次只能得到一种权值下的最优解。NSGA-II则避免了传统... 提出一种用于配电网故障定位的多目标优化模型,采用带精英策略的快速非支配排序遗传算法(NSGA-II)进行求解。传统多目标优化问题通过加权方式转换为单目标问题,对权值比较敏感,且每次只能得到一种权值下的最优解。NSGA-II则避免了传统加权求解时权值的选择和解的偏好性。该算法采用快速非支配排序机制,计算复杂性低;同时考虑个体拥挤距离,从而保证种群的多样性;最后,提出适用于故障定位的最优解集处理方法,便于从多目标最优解集中筛选出唯一符合故障情况的解。算例测试分别模拟单点、多点故障,以及信息完备和部分信息畸变的情况,测试结果表明,所提方法均能准确地定位故障区段。 展开更多
关键词 配电网 故障定位 优化 模型 pareto 非支配排序遗传算法 遗传算法 进化算法
在线阅读 下载PDF
基于多目标遗传算法求解多边谈判问题的Pareto解 被引量:6
15
作者 杨子晨 孟波 +1 位作者 熊德林 肖延松 《计算机工程与应用》 CSCD 北大核心 2002年第1期39-41,共3页
首先介绍国外学者在该领域所做的研究,然后论述多边谈判问题中的解的概念,提出一种采用多目标遗传算法求解多边谈判问题解的方法,利用VC++编写了该方法的算法软件,并通过示例分析计算,说明了该方法的可行性和有效性。
关键词 谈判 遗传算法 多目标优化 最优
在线阅读 下载PDF
面向Pareto最优遗传算法的服务组合方法 被引量:7
16
作者 胡焕耀 董渭清 +2 位作者 符锐 张星 赵晓昳 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第12期50-54,共5页
为了解决Pareto遗传算法在每一次进化操作中都要构造当前进化群体最优解集而影响运行效率的问题,提出了一种面向Pareto最优遗传算法的服务组合方法,以实现Web服务组合的全局优化.用伪二叉树法则构造目标函数的Pareto最优集合,再进行Par... 为了解决Pareto遗传算法在每一次进化操作中都要构造当前进化群体最优解集而影响运行效率的问题,提出了一种面向Pareto最优遗传算法的服务组合方法,以实现Web服务组合的全局优化.用伪二叉树法则构造目标函数的Pareto最优集合,再进行Pareto最优解集排序,最后采用个体相似度计算来确定遗传算法的适应度函数,由此获得一组满足约束条件的Pareto最优解服务集合.实验验证表明,所提方法可以提高多目标遗传算法处理服务组合效率的问题,即使在服务规模较大的情况下,所获得的解与最优值的比率仍能接近90%的水平. 展开更多
关键词 WEB服务组合 全局优化 遗传算法 pareto最优
在线阅读 下载PDF
多目标网络相异路径的Pareto解及其遗传算法 被引量:8
17
作者 李引珍 何瑞春 +1 位作者 郭耀煌 刘斌 《系统工程学报》 CSCD 北大核心 2008年第3期264-268,共5页
网络相异路径一般是多目标约束路径问题,具有重要应用价值.然而,由于问题的难解性,总是利用妥协思想将其转换为单目标问题求解.本文建立了双目标相异路径的一种优化模型,给出了模型求解过程中伪理想点的概念,提出了基于小生境共享竞争... 网络相异路径一般是多目标约束路径问题,具有重要应用价值.然而,由于问题的难解性,总是利用妥协思想将其转换为单目标问题求解.本文建立了双目标相异路径的一种优化模型,给出了模型求解过程中伪理想点的概念,提出了基于小生境共享竞争复制算子的遗传算法,该算法可求解多目标优化问题的 Pareto 解集.最后,给出了一个计算分析实例. 展开更多
关键词 相异路径 多目标优化 pareto解集 遗传算法
在线阅读 下载PDF
基于Pareto遗传算法的机翼多目标优化设计研究 被引量:9
18
作者 李倩 詹浩 朱军 《西北工业大学学报》 EI CAS CSCD 北大核心 2010年第1期134-137,共4页
文章将多目标优化方法中的Pareto遗传算法与能准确描述翼型无粘性流动的Euler方程以及旋翼气动分析模型结合起来,以旋翼悬停效率和固定翼的升阻比作为优化设计的目标对需同时满足旋翼和固定翼两种使用要求的机翼进行了多目标优化设计。... 文章将多目标优化方法中的Pareto遗传算法与能准确描述翼型无粘性流动的Euler方程以及旋翼气动分析模型结合起来,以旋翼悬停效率和固定翼的升阻比作为优化设计的目标对需同时满足旋翼和固定翼两种使用要求的机翼进行了多目标优化设计。设计结果表明通过优化设计的机翼在气动性能上得到了提高,达到了优化设计的目的,文中发展的机翼优化设计方法是可行的。 展开更多
关键词 飞行器 机翼 计算流体力学 优化 pareto遗传算法 多目标优化 旋翼 固定翼
在线阅读 下载PDF
多目标U型拆卸线平衡问题的Pareto蚁群遗传算法 被引量:9
19
作者 张则强 汪开普 +1 位作者 朱立夏 程文明 《西南交通大学学报》 EI CSCD 北大核心 2018年第3期628-637,660,共11页
针对传统方法求解多目标U型拆卸线平衡问题的不足,提出了一种基于Pareto解集的多目标蚁群遗传算法.在构造初始解阶段,以协同考虑最大作业时间、最小拆卸成本差作为蚂蚁的启发式信息;通过蚁群算法搜索可行拆卸序列,并根据多目标之间的支... 针对传统方法求解多目标U型拆卸线平衡问题的不足,提出了一种基于Pareto解集的多目标蚁群遗传算法.在构造初始解阶段,以协同考虑最大作业时间、最小拆卸成本差作为蚂蚁的启发式信息;通过蚁群算法搜索可行拆卸序列,并根据多目标之间的支配关系得到Pareto解集;将蚁群算法的Pareto非劣解作为遗传操作的个体,进而将遗传操作的结果正反馈于最优拆卸路径上信息素的积累,并采用拥挤距离作为蚂蚁全局信息素更新策略,可以平衡多目标对信息素的影响,使算法快速获得较优解.将所提算法应用于52项拆卸任务算例和某打印机拆卸线实例,在算例验证中,通过对比Pareto蚁群算法,所提算法求得的8个非劣解在3个评价指标上性能分别提高了50.43%、3.25%、14.10%,在实例应用中所提算法求得8种可选平衡方案,从而验证了所提算法的有效性、优越性和实用性. 展开更多
关键词 U型拆卸线平衡 多目标优化 蚁群算法 遗传算法 pareto解集
在线阅读 下载PDF
Pareto遗传算法在货位配置中的应用研究 被引量:26
20
作者 李梅娟 陈雪波 《控制工程》 CSCD 2006年第2期138-140,144,共4页
固定货架是自动化立体仓库应用最广泛的存储设备,货位配置是否优化直接影响货架的稳定性和存取操作效率。因此,建立了货位配置优化问题的数学模型,提出了采用Pareto遗传算法解决多目标组合优化问题,可得到Pareto最优解集。此算法包括5... 固定货架是自动化立体仓库应用最广泛的存储设备,货位配置是否优化直接影响货架的稳定性和存取操作效率。因此,建立了货位配置优化问题的数学模型,提出了采用Pareto遗传算法解决多目标组合优化问题,可得到Pareto最优解集。此算法包括5个基本算子:选择、变异、交叉、小生境技术、Pareto集合过滤器。通过仿真实验验证了将Pareto遗传算法应用在实际货位配置优化问题中,取得了较好的结果。 展开更多
关键词 自动化立体仓库 货位配置 pareto最优 遗传算法
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部