期刊文献+
共找到2,346篇文章
< 1 2 118 >
每页显示 20 50 100
Face Recognition Based on Support Vector Machine and Nearest Neighbor Classifier 被引量:8
1
作者 Zhang Yankun & Liu Chongqing Institute of Image Processing and Pattern Recognition, Shanghai Jiao long University, Shanghai 200030 P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期73-76,共4页
Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with ... Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with the nearest neighbor classifier (NNC) is proposed. The principal component analysis (PCA) is used to reduce the dimension and extract features. Then one-against-all stratedy is used to train the SVM classifiers. At the testing stage, we propose an al- 展开更多
关键词 Face recognition Support vector machine nearest neighbor classifier Principal component analysis.
在线阅读 下载PDF
Approximate aggregate nearest neighbor search on moving objects trajectories
2
作者 Mohammad Reza Abbasifard Hassan Naderi +1 位作者 Zohreh Fallahnejad Omid Isfahani Alamdari 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4246-4253,共8页
Aggregate nearest neighbor(ANN) search retrieves for two spatial datasets T and Q, segment(s) of one or more trajectories from the set T having minimum aggregate distance to points in Q. When interacting with large am... Aggregate nearest neighbor(ANN) search retrieves for two spatial datasets T and Q, segment(s) of one or more trajectories from the set T having minimum aggregate distance to points in Q. When interacting with large amounts of trajectories, this process would be very time-consuming due to consecutive page loads. An approximate method for finding segments with minimum aggregate distance is proposed which can improve the response time. In order to index large volumes of trajectories, scalable and efficient trajectory index(SETI) structure is used. But some refinements are provided to temporal index of SETI to improve the performance of proposed method. The experiments were performed with different number of query points and percentages of dataset. It is shown that proposed method besides having an acceptable precision, can reduce the computation time significantly. It is also shown that the main fraction of search time among load time, ANN and computing convex and centroid, is related to ANN. 展开更多
关键词 APPROXIMATE AGGREGATE k nearest neighbor(AAk NN) s
在线阅读 下载PDF
基于机器学习的30%TBP/煤油-硝酸体系中主要组分的分配比预测研究 被引量:1
3
作者 于婷 张音音 +6 位作者 张睿志 金文蕾 罗应婷 朱升峰 何辉 叶国安 龚禾林 《原子能科学技术》 北大核心 2025年第1期14-23,共10页
为最优化后处理过程的实验条件、优化工艺、降低实验成本和时间,并提高后处理流程数学模拟的准确性,本文基于随机森林、支持向量回归和K近邻这3种经典的机器学习算法建立了30%TBP/煤油-硝酸体系中主要组分铀、钚、硝酸的分配比数学模型... 为最优化后处理过程的实验条件、优化工艺、降低实验成本和时间,并提高后处理流程数学模拟的准确性,本文基于随机森林、支持向量回归和K近邻这3种经典的机器学习算法建立了30%TBP/煤油-硝酸体系中主要组分铀、钚、硝酸的分配比数学模型,并基于不同数据集进行了超参数优化和模型训练。通过对模型进行验证和测试,发现采用随机森林算法建立的分配比模型准确度最高,其对铀预测的平均绝对相对误差达7.73%,较传统方法提高了约7%。与传统建模方法相比,机器学习方法建立模型的准确度更高。 展开更多
关键词 分配比数学模型 随机森林 支持向量回归 K近邻
在线阅读 下载PDF
基于点云配准与最近邻搜索的钢轨磨耗测量方法 被引量:1
4
作者 曾杉 王文斌 +3 位作者 尹太军 彭建川 刘艳彩 张杰 《燕山大学学报》 北大核心 2025年第1期55-65,共11页
提出了基于点云配准和最邻近搜索的方法,以解决钢轨轨腰处钢印噪声导致的轨顶磨耗测量点识别误差较大的问题,并成功实现了钢轨垂直和侧面磨耗点的自动定位。首先,通过坐标系旋转和点云滤波等预处理技术,以钢轨轮廓作为数据单元,获取有... 提出了基于点云配准和最邻近搜索的方法,以解决钢轨轨腰处钢印噪声导致的轨顶磨耗测量点识别误差较大的问题,并成功实现了钢轨垂直和侧面磨耗点的自动定位。首先,通过坐标系旋转和点云滤波等预处理技术,以钢轨轮廓作为数据单元,获取有效的钢轨配准数据。接着,采用非线性拟合方法拟合轨腰圆弧的圆心,以此作为基准点进行任意状态下的点云初步粗配准。对于在轨腰处出现钢印编号的实际测量情况,采用了轨顶与轨腰点云的ICP加权精配准方案,实现测量轮廓与标准轮廓的精确重合。最后,根据钢轨磨耗计量办法,以标准钢轨轮廓指定位置坐标线为基准线,在配准后的点云数据中,通过最邻近搜索的方法寻找距离基准线最近的坐标,从而精确定位磨耗测量点的位置。实验结果表明,该方法能高效且精确地提取钢轨磨耗测量点。文章最后以三维图的方式展示磨耗测量点与标准轮廓的对比,其特征点提取的标准偏差小于0.1 mm,最大偏差小于0.3 mm。 展开更多
关键词 钢轨磨耗 点云预处理 加权点云配准 最近邻搜索
在线阅读 下载PDF
基于激光点云的架空输电线路导线弧垂测量系统
5
作者 李鹏 井小川 +2 位作者 宁昊 孟庆伟 朱明晓 《实验技术与管理》 北大核心 2025年第6期55-61,共7页
电力导线弧垂是影响输电线路运行状态的重要参数,对弧垂的有效监控是输电网络健康运行的重要保障。针对输电线路中的电力导线弧垂测量实验,设计了一套基于无人机激光点云的导线弧垂测量系统,提出了基于三维点云的输电导线寻踪和缺失点... 电力导线弧垂是影响输电线路运行状态的重要参数,对弧垂的有效监控是输电网络健康运行的重要保障。针对输电线路中的电力导线弧垂测量实验,设计了一套基于无人机激光点云的导线弧垂测量系统,提出了基于三维点云的输电导线寻踪和缺失点云补全方法,并为系统开发了前端用户交互界面。通过开展对汉郑线JL3/G1A-630/45架空输电线路的测量实验,验证了该测量系统能够有效准确地测量电力导线的弧垂,并且具备较好的鲁棒性和高效性。 展开更多
关键词 弧垂 激光点云 近邻搜索 点云补全
在线阅读 下载PDF
基于锚点匹配和距离修正的轨迹相似性度量方法
6
作者 桂志鹏 窦晨 +2 位作者 彭德华 刘宇航 吴华意 《地理与地理信息科学》 北大核心 2025年第1期1-14,共14页
轨迹相似性度量对群体移动模式分析与个性化位置服务推荐具有重要意义,现有方法未综合考虑轨迹点序列顺序与点对空间邻近性,导致对局部相似轨迹、逆序轨迹间的关系度量不准确。该文提出一种顾及轨迹全局空间分布和序列顺序的轨迹相似性... 轨迹相似性度量对群体移动模式分析与个性化位置服务推荐具有重要意义,现有方法未综合考虑轨迹点序列顺序与点对空间邻近性,导致对局部相似轨迹、逆序轨迹间的关系度量不准确。该文提出一种顾及轨迹全局空间分布和序列顺序的轨迹相似性度量方法,基于K近邻算法识别两条轨迹中空间相似度高的点对作为锚点,以划分区间约束其他点对匹配,并对受序列顺序约束无法匹配至空间邻近点的轨迹点进行距离修正,优化轨迹相似性计算。在深圳市515条人工标注轨迹数据上的验证结果表明,与改进的编辑距离、模糊最长公共子串和时空格网模型等8种方法相比,该方法在轨迹聚类任务中准确性提升2.8%~41.9%,并对轨迹长度、噪声和采样率变化具有较高的鲁棒性;此外,通过消融实验、特殊场景分析等证明了方法各步骤的有效性,并探讨了算法参数对精度的影响。研究结果可为轨迹聚类、轨迹检索等下游任务提供支撑。 展开更多
关键词 轨迹相似性 轨迹匹配 时间序列 空间邻近性 K近邻 距离衰减
在线阅读 下载PDF
混合多策略北方苍鹰优化算法及特征选择
7
作者 鲍美英 申晋祥 +1 位作者 张景安 周建慧 《现代电子技术》 北大核心 2025年第11期121-130,共10页
针对北方苍鹰优化(NGO)算法在处理复杂优化问题时,存在收敛速度慢、求解精度低和易陷入局部最优等问题,提出融合多种策略的北方苍鹰优化(LANGO)算法。LANGO算法采用Tent混沌映射和反向学习策略初始化种群,增加种群多样性,提高全局搜索能... 针对北方苍鹰优化(NGO)算法在处理复杂优化问题时,存在收敛速度慢、求解精度低和易陷入局部最优等问题,提出融合多种策略的北方苍鹰优化(LANGO)算法。LANGO算法采用Tent混沌映射和反向学习策略初始化种群,增加种群多样性,提高全局搜索能力;引入非线性权重因子,改善全局勘探能力,提高算法的收敛速度和收敛精度;引入Lévy飞行,改进NGO算法采用随机猎物引导种群易陷入局部最优的缺陷,对陷入局部最优的解进行扰动,使其跳出局部最优。选取8个经典基准函数进行测试,仿真结果表明,LANGO在求解精度、收敛速度等方面都优于比较算法。LANGO与K近邻分类器相结合,用于解决特征选择问题,进行数据分类,可以对特征有效降维并提高数据分类的准确率。 展开更多
关键词 北方苍鹰优化算法 Lévy飞行 特征选择 K近邻分类器 权重因子 收敛性
在线阅读 下载PDF
应用小样本学习模型的淡水水质参数反演方法
8
作者 孙盛 郑成钊 +1 位作者 周巨锁 余旭 《遥感信息》 北大核心 2025年第4期19-25,共7页
在水质反演任务中,传统方法主要依赖物理模型来推导水质参数与遥感数据之间的关系,在气象条件、水文地理条件发生变化时,模型的预测性能不佳。为了提升反演方法的性能,提出将小样本学习方法应用于水质参数的预测,设计了一个局部描述符... 在水质反演任务中,传统方法主要依赖物理模型来推导水质参数与遥感数据之间的关系,在气象条件、水文地理条件发生变化时,模型的预测性能不佳。为了提升反演方法的性能,提出将小样本学习方法应用于水质参数的预测,设计了一个局部描述符权重注意力模块,将其集成到经典的小样本学习网络DN4中。该模块能够更有效地提取水质特征的局部描述符,从而提升模型在训练集数据量有限条件下的泛化能力和反演精度。收集了新丰江水库、良德水库等8个水库的水质数据,与哨兵二号卫星(Sentinel-2A、Sentinel-2B)遥感图像数据源进行匹配,共成功匹配210景图像,并构建了水质数据训练集和测试集。开展了定量实验,结果表明,新的反演方法在多个水质反演应用中均表现出较好的性能,验证了所提出模块在水质反演领域的有效性。 展开更多
关键词 小样本学习 注意力模块 水质反演 深度最近邻网络 局部描述符
在线阅读 下载PDF
基于快速特征逼近谱图注意力网络的滚动轴承半监督智能故障诊断研究
9
作者 宁少慧 杜越 周利东 《机床与液压》 北大核心 2025年第6期33-39,共7页
基于图注意力网络的诊断模型在故障诊断全监督任务中有较好的表现,但在半监督任务中表现欠佳。针对此问题,构建一种基于快速特征逼近谱图注意力网络的半监督滚动轴承智能故障诊断模型。通过K近邻图方法将振动信号转为可用于诊断的图数据... 基于图注意力网络的诊断模型在故障诊断全监督任务中有较好的表现,但在半监督任务中表现欠佳。针对此问题,构建一种基于快速特征逼近谱图注意力网络的半监督滚动轴承智能故障诊断模型。通过K近邻图方法将振动信号转为可用于诊断的图数据,丰富了数据特征;将图数据输入到构建的诊断模型中,学习故障信息特征,并分析不同的标签比例训练集的诊断结果。同时,分析了Sum、Mean、Max 3种池化方式和超参数对诊断模型的影响;最后,分别在两组实验轴承数据集上进行验证。结果表明:所提模型可以有效地捕获图的全局模式,降低计算复杂度,在全监督诊断任务中其诊断准确率可以保持在99%以上;在标签比例为10%的半监督任务中,其诊断准确率仍能保持在93.5%,所提诊断模型在半监督任务中有良好表现。 展开更多
关键词 轴承 故障诊断 快速特征逼近谱图注意力网络 K近邻图算法
在线阅读 下载PDF
KMDW和ISVDD方法在钻头磨损状态识别中的应用
10
作者 郝旺身 娄本池 +4 位作者 董辛旻 王林恒 朱春辉 陈世金 王亚坤 《重庆理工大学学报(自然科学)》 北大核心 2025年第7期179-186,共8页
为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVD... 为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVDD模型进行故障分类,对混叠样本采用K近邻隶属度值进行识别,并采用改进的蝴蝶优化算法(IBOA)优化SVDD模型参数。在标准数据集上验证所提方法的优越性,结果表明:加入K近邻隶属度值可使F值和准确率分别提升6.36%和6.59%;KMDW相比K均值聚类方法的ARI值和NMI值分别提升10.01%和10.75%,能够达到更好的聚类效果;经蝴蝶优化算法改进后模型识别精度进一步提高。将所提方法应用于钻头磨损状态的识别,识别准确率达到92.83%,证明其具有较好的识别精度和通用性。 展开更多
关键词 SVDD K均值密度权重聚类 蝴蝶优化算法 K近邻算法 钻头磨损状态识别
在线阅读 下载PDF
DTWAWKNN驱动的蓝牙/WiFi指纹定位方法
11
作者 杨明 纪冬华 《导航定位学报》 北大核心 2025年第3期189-197,共9页
针对蓝牙/无线保真(WiFi)指纹定位效果差、算法复杂度高等问题,提出一种动态时间规整辅助加权K近邻(DTWAWKNN)驱动的蓝牙/WiFi指纹定位方法:离线阶段,通过动态时间规整(DTW)算法计算不等维度的蓝牙、WiFi和蓝牙/WiFi混合指纹之间的相似... 针对蓝牙/无线保真(WiFi)指纹定位效果差、算法复杂度高等问题,提出一种动态时间规整辅助加权K近邻(DTWAWKNN)驱动的蓝牙/WiFi指纹定位方法:离线阶段,通过动态时间规整(DTW)算法计算不等维度的蓝牙、WiFi和蓝牙/WiFi混合指纹之间的相似度,并基于加权K近邻(WKNN)实现匹配定位,然后以蓝牙、WiFi及蓝牙/WiFi混合指纹库与蓝牙、WiFi及蓝牙/WiFi混合指纹的匹配结果为定位特征,构建基于多类型指纹匹配定位结果的离线定位指纹库;在线阶段,基于DTWAWKNN实现蓝牙、WiFi和蓝牙/WiFi混合指纹之间的匹配定位,获取基于多类型指纹匹配定位结果的在线定位指纹,再基于WKNN算法实现离线定位指纹库和在线定位指纹的匹配定位。实验结果表明,提出方法的定位效果远优于WKNN、随机森林(RF)和支持向量机(SVM),定位精度可至少提高67.74%,定位稳定性最少提高54.51%,算法复杂度至少降低77.9%。 展开更多
关键词 蓝牙 无线保真(WiFi) 指纹定位 动态时间规整(DTW) 加权K近邻(WKNN)
在线阅读 下载PDF
基于快速学习图卷积网络的滚动轴承故障诊断研究
12
作者 宁少慧 董振才 +1 位作者 戎有志 周利东 《机床与液压》 北大核心 2025年第12期53-59,共7页
图神经网络跨层的递归邻域扩展为训练大型密集图带来时间方面的挑战,导致轴承故障诊断的训练效率不高。针对此问题,提出一种基于快速学习图卷积网络方法并将其应用于滚动轴承故障诊断中。利用快速傅里叶变换(FFT)将采集的轴承故障时域... 图神经网络跨层的递归邻域扩展为训练大型密集图带来时间方面的挑战,导致轴承故障诊断的训练效率不高。针对此问题,提出一种基于快速学习图卷积网络方法并将其应用于滚动轴承故障诊断中。利用快速傅里叶变换(FFT)将采集的轴承故障时域信号转化为频域数据,再利用K近邻(KNN)算法将频域信号转换为图数据,以图数据显示频域特征,极大丰富了输入信息;引入快速学习图卷积网络(Fast-GCN)模型,通过重要性采样对故障特征进行学习;最后,利用Log-Softmax函数输出最终分类结果,从而实现滚动轴承单一故障的分类。实验结果表明:所提模型在保证故障分类准确率的前提下,诊断速度显著提升,甚至比图卷积神经网络(GCN)的诊断速度增加了约1倍,且所提方法具有良好的半监督诊断性能与泛化能力。 展开更多
关键词 滚动轴承 故障诊断 K近邻(KNN)算法 快速傅里叶变换(FFT) 快速学习图卷积网络(Fast-GCN)
在线阅读 下载PDF
基于图结构增强的番茄叶部病害识别方法
13
作者 刘博 王斌成 +2 位作者 陶旭 郭娜炜 马寅驰 《中国农机化学报》 北大核心 2025年第5期125-132,共8页
番茄作为重要的蔬菜作物,其产量和质量常受到各类叶部病害的影响。针对此问题,计算机视觉技术已被广泛应用于病害的自动识别中。现有方法主要分为基于手工特征提取与深度学习两大类。基于手工特征的方法虽然简洁高效,但在鲁棒性方面存... 番茄作为重要的蔬菜作物,其产量和质量常受到各类叶部病害的影响。针对此问题,计算机视觉技术已被广泛应用于病害的自动识别中。现有方法主要分为基于手工特征提取与深度学习两大类。基于手工特征的方法虽然简洁高效,但在鲁棒性方面存在限制;而基于深度学习的方法,尽管能有效提升识别准确性,但往往需要较大的数据标注量与较高的计算复杂性。为解决这些问题,提出一种基于图结构增强的番茄叶部病害识别框架(TDR—EGS)。TDR—EGS通过整合样本间的拓扑关系,实现图学习与单样本学习的交替训练,从而在不增加模型推理阶段复杂度的前提下有效提升分类性能。首先通过卷积神经网络提取单样本特征,然后利用这些特征构建k近邻图以挖掘样本间的结构信息。这种方法使得图学习和单样本学习能够在共享的网络结构和外部存储机制的支持下协同工作。在11种番茄病害上的试验结果表明,TDR—EGS能在不增加推理复杂度的前提下有效提升多种主流基准模型的性能,最高达到98.61%的识别精度。此外,即使在仅使用60%标签信息的条件下,TDR—EGS的性能仍可以接近或超过完全监督学习的基准模型,充分证明该框架的有效性和泛化能力,为农业病害识别应用提供一种高效且通用的解决方案。 展开更多
关键词 番茄叶部 病害识别 图学习 k近邻图 交替训练 深度学习
在线阅读 下载PDF
基于RSA模型和改进K-means算法的电商行业客户细分
14
作者 杨静 《计算机应用与软件》 北大核心 2025年第8期125-131,172,共8页
针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻... 针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻和密度峰值聚类的K-means初始聚类中心选取方法,优化传统K-means算法实现客户细分。通过选取的标准数据集和某零售公司在线交易的真实数据进行实验验证,证明了RSA模型和改进K-means算法具有更加优异的性能。 展开更多
关键词 RSA模型 客户细分 K-MEANS算法 密度峰值聚类 K近邻
在线阅读 下载PDF
一种基于改进RRT的起重机路径规划算法
15
作者 卢德俊 孟庆国 《兵工自动化》 北大核心 2025年第7期1-4,共4页
针对现有起重机路径规划效率低的问题,提出一种基于改进快速探索随机树(rapidly-exploring random tree,RRT)的起重机路径规划算法。将广义距离替代经典RRT中欧氏距离,解决多自由度(degree of freedom,DOF)下RRT中距离的定义不明确的问... 针对现有起重机路径规划效率低的问题,提出一种基于改进快速探索随机树(rapidly-exploring random tree,RRT)的起重机路径规划算法。将广义距离替代经典RRT中欧氏距离,解决多自由度(degree of freedom,DOF)下RRT中距离的定义不明确的问题。基于降维概念的胞元法,将C构型空间(configuration space,C空间)划分为大小相等的单元格,解决经典RRT中最近邻搜索(nearest neighbor search,NNS)在计算时间和资源方面效率低的问题。实验结果表明:在相同实验条件下,改进的RRT算法比双向RRT算法计算时间减少89.5%,能提高计算时间效率和提升搜寻路径质量,具有一定的参考价值。 展开更多
关键词 起重机 路径规划 快速探索随机树 广义距离 自由度 最邻近搜索
在线阅读 下载PDF
基于图卷积网络的室内Wi-Fi指纹定位算法
16
作者 康晓非 梁琪悦 李雨玫 《计算机工程与设计》 北大核心 2025年第8期2157-2162,共6页
针对传统室内定位算法未考虑指纹数据非欧几里德特征的问题,提出一种基于图卷积网络(graph convolutional neural network,GCN)双层特征提取的Wi-Fi指纹室内定位算法(DuGCNLoc)。该算法在接入点(access point,AP)层面通过设计邻接矩阵... 针对传统室内定位算法未考虑指纹数据非欧几里德特征的问题,提出一种基于图卷积网络(graph convolutional neural network,GCN)双层特征提取的Wi-Fi指纹室内定位算法(DuGCNLoc)。该算法在接入点(access point,AP)层面通过设计邻接矩阵建立图结构;在参考点(reference point,RP)层面,使用K近邻(K-nearest neighbor,KNN)选取邻近节点构建子图,并通过GCN分别对图结构特征提取,位置预测由全连接层(fully connected layer,FC)完成。实验结果表明,所提算法在自建数据集和公共数据集上的定位性能均优于传统算法,实现了平均定位误差为0.85 m的精度。 展开更多
关键词 室内定位 位置指纹 图结构 邻接矩阵 图卷积网络 最近邻算法 接收信号强度
在线阅读 下载PDF
基于改进双目ORB-SLAM3的特征匹配算法
17
作者 伞红军 冯金祥 +2 位作者 陈久朋 彭真 赵龙云 《农业机械学报》 北大核心 2025年第5期625-634,共10页
针对传统ORB算法在双目特征匹配阶段误匹配率高而导致无法满足高精度定位要求的问题,提出了一种基于改进双目ORB-SLAM3的特征匹配算法。在特征点匹配阶段引入最近邻匹配算法(FLANN),通过设定比率阈值筛选出更为精确的匹配对,在双目ORB-S... 针对传统ORB算法在双目特征匹配阶段误匹配率高而导致无法满足高精度定位要求的问题,提出了一种基于改进双目ORB-SLAM3的特征匹配算法。在特征点匹配阶段引入最近邻匹配算法(FLANN),通过设定比率阈值筛选出更为精确的匹配对,在双目ORB-SLAM3立体匹配中引入自适应加权SAD-Census算法,通过考虑像素之间的几何距离,重新计算SAD值并与Census算法相融合来提高特征匹配稳定性和精度,同时加入自适应的SAD窗口滑动范围进一步扩大搜索距离,进而筛选出正确的匹配来提高系统精度。在EuRoC数据集和真实室内场景中进行实验,结果表明与改进前ORB-SLAM3算法相比,在数据集下改进算法定位精度提高23.32%,真实环境中提高近50%,从而验证了改进算法可行性和有效性。 展开更多
关键词 改进双目ORB-SLAM3 特征匹配 最近邻匹配算法 自适应加权SAD-Census算法
在线阅读 下载PDF
基于中值和滑动窗口融合滤波的WKNN定位算法 被引量:1
18
作者 李小年 谭方 +3 位作者 齐斐 杨永锋 姜汗涛 李芳芳 《传感器与微系统》 北大核心 2025年第5期142-145,共4页
针对室内定位中接收信号强度指示(RSSI)受到环境干扰波动大,使得定位精度低且不稳定,但是单一滤波算法较难实现有效滤波的问题,本文提出基于中值和滑动窗口融合滤波的加权K最近邻(WKNN)定位算法,该算法分别用中值和滑动窗口对RSSI值进... 针对室内定位中接收信号强度指示(RSSI)受到环境干扰波动大,使得定位精度低且不稳定,但是单一滤波算法较难实现有效滤波的问题,本文提出基于中值和滑动窗口融合滤波的加权K最近邻(WKNN)定位算法,该算法分别用中值和滑动窗口对RSSI值进行滤波,再用卡尔曼算法对两种滤波结果进行融合,实现融合滤波,最后用基于动态权重的WKNN算法实现定位。实验结果表明,经过融合滤波处理RSSI后,定位的平均误差为0.946 m,定位精度优于单一滤波且更稳定。 展开更多
关键词 室内定位 融合滤波 接收信号强度指示 加权K最近邻
在线阅读 下载PDF
一种基于KNN和随机仿射的边界样本合成过采样方法 被引量:1
19
作者 冷强奎 孙薛梓 孟祥福 《智能系统学报》 北大核心 2025年第2期329-343,共15页
过采样是处理不平衡数据分类问题的有效策略。本文提出了一种基于K近邻(K-nearest neighbor,KNN)和随机仿射的边界样本合成过采样方法,用于改进现有过采样方法的种子样本选择阶段和合成样本生成阶段。首先,引入三近邻理论,建立样本间有... 过采样是处理不平衡数据分类问题的有效策略。本文提出了一种基于K近邻(K-nearest neighbor,KNN)和随机仿射的边界样本合成过采样方法,用于改进现有过采样方法的种子样本选择阶段和合成样本生成阶段。首先,引入三近邻理论,建立样本间有效的内在近邻关系,并去除数据集中的噪声,以降低后续分类器的过拟合风险。其次,准确识别那些难以学习且包含丰富信息的少数类边界样本,并将其用作采样种子。最后,利用局部随机仿射代替线性插值机制,在原始数据的近似流形中均匀地生成合成样本。相比于传统过采样方法,本文方法能更充分挖掘数据集中的重要边界信息,从而为分类器提供更多辅助以改善其分类性能。在18个基准数据集上,与8种经典采样方法(结合4种不同分类器)进行了大量对比实验。结果表明,本文所提方法获得了更高的F1分数和几何均值(G-mean),可以更为有效地解决不平衡数据分类问题。此外,统计分析也证实该方法具有更高的弗里德曼排名(Friedman ranking)。 展开更多
关键词 K近邻 线性插值 边界样本 自然分布 过采样 三近邻理论 随机仿射变换 不平衡分类
在线阅读 下载PDF
面向大规模图像检索的哈希学习综述 被引量:1
20
作者 张雪凝 刘兴波 +3 位作者 宋井宽 聂秀山 王少华 尹义龙 《软件学报》 北大核心 2025年第1期79-106,共28页
随着互联网空间中图像数据的爆发式增长和图像应用领域的拓宽,大规模图像检索的需求与日俱增.哈希学习为大规模图像检索提供显著的存储与检索效率,并成为近年来一个研究热点.现有哈希学习综述存在着时效性弱与技术路线不清晰的问题,即... 随着互联网空间中图像数据的爆发式增长和图像应用领域的拓宽,大规模图像检索的需求与日俱增.哈希学习为大规模图像检索提供显著的存储与检索效率,并成为近年来一个研究热点.现有哈希学习综述存在着时效性弱与技术路线不清晰的问题,即多总结5–10年前的研究成果,且较少总结哈希学习算法各组成部分间的关联关系.鉴于此,通过总结近20年公开发表的哈希学习文献,对面向大规模图像检索的哈希学习进行系统的综述性研究.首先,介绍哈希学习的技术路线和哈希学习算法的主要组成部分,包括损失函数、优化策略及样本外扩展映射.其次,将面向图像检索的哈希学习算法分为无监督哈希方法和监督哈希方法两类,并分别梳理每类方法的研究现状和演化过程.然后,介绍哈希学习算法评估通用的图像数据集与评估指标,并通过对比实验分析部分经典算法的性能.最后,结合哈希学习的局限性与新挑战对其发展前景进行阶段性总结与展望. 展开更多
关键词 图像检索 大规模数据 近似最近邻检索 哈希学习 相似性保持
在线阅读 下载PDF
上一页 1 2 118 下一页 到第
使用帮助 返回顶部