Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other...Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other fields.In recent years,with the continuous increase in demand for medium-thick plate titanium alloys,corresponding welding technologies have also continued to develop.Therefore,this article reviews the research progress of deep penetration welding technology for medium-thick plate titanium alloys,mainly covering traditional arc welding,high-energy beam welding,and other welding technologies.Among many methods,narrow gap welding,hybrid welding,and external energy field assistance welding all contribute to improving the welding efficiency and quality of medium-thick plate titanium alloys.Finally,the development trend of deep penetration welding technology for mediumthick plate titanium alloys is prospected.展开更多
The effects of different warm rolling(WR)reductions on the microstructure and mechanical properties of low-Cr FeCrAl alloys at both room and elevated temperatures were investigated.The study revealed that when the WR ...The effects of different warm rolling(WR)reductions on the microstructure and mechanical properties of low-Cr FeCrAl alloys at both room and elevated temperatures were investigated.The study revealed that when the WR reduction is small,it effectively refines the grains and forms a large number of subgrains in the matrix,while also inducing the dissolution of the Laves phase.This enhances the mechanical properties of FeCrAl alloys primarily through grain refinement and solid solution strengthening.Conversely,with larger WR reductions,the grain refinement effect diminishes,but a significant number of Laves phases form in the matrix,strengthening the alloys primarily through precipitation strengthening.WR exhibited a remarkable enhancing effect on the comprehensive mechanical properties at both room and high temperatures,with a signi-ficant enhancement in ductility at high temperatures.Notably,a 10%WR reduction resulted in the optimal overall mechanical properties at both room and elevated temperatures.展开更多
High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and ...High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and process optimization,characterized by low efficiency and high costs.The integration of Artificial Intelligence(AI)technologies has provided innovative solutions for HEAs research.This review presented a detailed overview of recent advancements in AI applications for structural modeling and mechanical property prediction of HEAs.Furthermore,it discussed the advantages of big data analytics in facilitating alloy composition design and screening,quality control,and defect prediction,as well as the construction and sharing of specialized material databases.The paper also addressed the existing challenges in current AI-driven HEAs research,including issues related to data quality,model interpretability,and cross-domain knowledge integration.Additionally,it proposed prospects for the synergistic development of AI-enhanced computational materials science and experimental validation systems.展开更多
Al-Cu-Mg-Ag alloys have become a research hotspot because of its good heat resistance.Its excellent mechanical properties are inseparable from the regulation of the structure by researchers.The method of material stru...Al-Cu-Mg-Ag alloys have become a research hotspot because of its good heat resistance.Its excellent mechanical properties are inseparable from the regulation of the structure by researchers.The method of material structure simulation has become more and more perfect.This study employs numerical simulation to investigate the microstructure evolution of Al-Cu-Mg-Ag alloys during solidification with the aim of controlling its structure.The size distribution of Ti-containing particles in an Al-Ti-B master alloy was characterized via microstructure observation,serving as a basis for optimizing the nucleation density parameters for particles of varying radii in the phase field model.The addition of refiner inhibited the growth of dendrites and no longer produced coarse dendrites.With the increase of refiner,the grains gradually tended to form cellular morphology.The refined grains were about 100μm in size.Experimental validation of the simulated as-cast grain morphology was conducted.The samples were observed by metallographic microscope and scanning electron microscope.The addition of refiner had a significant effect on the refinement of the alloy,and the average grain size after refinement was also about 100μm.At the same time,the XRD phase identification of the alloy was carried out.The observation of the microstructure morphology under the scanning electron microscope showed that the precipitated phase was mainly concentrated on the grain boundary.The Al_(2)Cu accounted for about 5%,and the matrix phase FCC accounted for about 95%,which also corresponded well with the simulation results.展开更多
High-entropy alloys(HEAs)have become essential materials in the aerospace and defense industries due to their remarkable mechanical properties,which include wear resistance,fatigue endurance,and corrosion resistance.T...High-entropy alloys(HEAs)have become essential materials in the aerospace and defense industries due to their remarkable mechanical properties,which include wear resistance,fatigue endurance,and corrosion resistance.The welding of high-entropy alloys is a cutting-edge field of study that is attracting a lot of interest and investigation from research organizations and businesses.Welding defects including porosity and cracks are challenging problem and limit the development of welding HEAs.This paper provides a comprehensive review of research on weldability of HEAs and the application of diverse welding techniques on welding HEAs over recent years.The forming mechanism and control strategies of defects during welding HEAs were provided in this work.Various welding techniques,including arc welding,laser welding,electron beam welding,friction stir welding,diffusion bonding and explosive welding,have been extensively investigated and applied to improve the microstructure and mechanical properties of HEAs joints.Furthermore,an in-depth review of the microstructure and mechanical properties of HEAs joints obtained by various welding methods is presented.This paper concludes with a discussion of the potential challenges associated with high-entropy alloy welding,thus providing valuable insights for future research efforts in this area.展开更多
To weaken the basal texture and in-plane anisotropy of magnesium alloy, non-basal slips are pre-enhanced by pre-rolling with a single pass larger strain reduction at elevated temperatures. Then Mg alloy sheets with th...To weaken the basal texture and in-plane anisotropy of magnesium alloy, non-basal slips are pre-enhanced by pre-rolling with a single pass larger strain reduction at elevated temperatures. Then Mg alloy sheets with the thickness of 1 mm are achieved after five passes rolling at 300 ℃. A double peak and disperse basal texture is generated after pre- rolling at higher temperatures when the non-basal slips are more active. So, the texture intensity of pre-rolled samples is reduced. Moreover, the distribution condition of in-grain misorientation axes (a method to analyze the activation of slips) shows that the pyramidal slip is quite active during deformation. After annealing on final rolled sheets, the texture distributions are changed and the intensity of texture reduces obviously due to static recrystallization. In particular, the r-value and in-plane anisotropy of pre-rolled samples are obviously lower than those of sample without pre-rolling.展开更多
The pronounced anisotropy in mechanical properties presents a major obstacle to the extensive application of aluminum-lithium(Al-Li)alloys,primarily attributed to heterogeneous precipitate distribution,grain structure...The pronounced anisotropy in mechanical properties presents a major obstacle to the extensive application of aluminum-lithium(Al-Li)alloys,primarily attributed to heterogeneous precipitate distribution,grain structure variations,and crystallographic texture.This study investigates the impact of pre-thermal treatment prior to hot rolling and aging treatment on the anisotropy of mechanical properties of 2195 alloy sheet fabricated by gas atomization,hot pressing and hot rolling.The results demonstrate that pre-treatment at 450℃for 4 h promotes finer and more uniform distribution of precipitates,effectively mitigating mechanical anisotropy of the alloy sheet.Additionally,this treatment facilitates recrystallization during hot rolling,further reducing mechanical anisotropy.The in-plane anisotropy(IPA)factors for ultimate tensile strength(UTS)and yield strength(YS)are 1.15%and 0.77%,respectively.Subsequent aging treatment enhances grain refinement and the uniformity of the T_(1) phase,suppresses the formation of precipitation-free zones(PFZs),significantly improving the strength and toughness of the alloy sheet.After peak aging at 165℃for 48 h,the alloy sheet exhibits YS of 547 MPa,UTS of 590 MPa,and elongation(EL)of 7.7%.展开更多
The influence of grain size or grain refinement on the corrosion of Zr alloy is clarified by employing a series of electrochemical analyses and characterization techniques.The corrosion resistance,as a function of exp...The influence of grain size or grain refinement on the corrosion of Zr alloy is clarified by employing a series of electrochemical analyses and characterization techniques.The corrosion resistance,as a function of exposure time,F−concentration,and solution temperatures,of Zr alloys with different grain sizes is ascertained.The results confirm that refining the grain size can effectively enhance the short-time corrosion properties of Zr alloy in HNO_(3) with F−.The fine grained Zr alloy(~10μm in diameter)consistently exhibits a lower corrosion current density,ranging from 18%to 46%lower than that of the coarse-grained Zr alloy(~44μm).The enhanced corrosion resistance is attributed to the high density grain boundaries,which promote oxide stability,and accelerate the creation of the protective layer.The high corrosion rate and pseudo-passivation behavior of Zr alloys in fluorinated nitric acid originate from the accelerated“dissolution-passivation”of the oxide film.However,the grain refinement does not provide enduring anti-corrosion for Zr alloys.To meet the operation of spent fuel reprocessing,additional systematic efforts are required to evaluate the long term effect of grain refinement.展开更多
An increase in RE element content in Mg alloys promotes the grain boundary precipitate,which affects the mechanical properties.However,the influence of grain boundary precipitates on microstructure of Mg-RE alloys dur...An increase in RE element content in Mg alloys promotes the grain boundary precipitate,which affects the mechanical properties.However,the influence of grain boundary precipitates on microstructure of Mg-RE alloys during ageing and their role on ductility of the aged alloy is unclear.In this work,hot extrusion and ageing treatment were performed for Mg-9Gd-2Y-xNd-0.2Zr(x=1 wt.%and 3 wt.%)alloys,and grain boundary precipitates were formed in the extruded Mg-9Gd-2Y-3Nd-0.2Zr alloy due to the increase of Nd content.The extruded alloys exhibit a complete dynamic recrystallization(DRX)microstructure and a texture with the<0001>orientation parallel to the extrusion direction(ED).In addition,a large amount of fiber microstructures distributed by the second phase along the ED were formed in the Mg-9Gd-2Y-3Nd-0.2Zr alloy,while only a small amount of the second phase was observed in the Mg-9Gd-2Y-1Nd-0.2Zr alloy.After ageing treatment,a large amount ofβ'phase precipitated inside the grains.The strength of the Mg-9Gd-2Y-1Nd-0.2Zr alloy increased from 202 MPa to 275 MPa but the elongation decreased from 12.8%to 2.6%,and the strength of the Mg-9Gd-2Y-3Nd-0.2Zr alloy increased from 212 MPa to 281 MPa but the elongation decreased from 13.7%to 6.2%.Among them,the Mg-9Gd-2Y-3Nd-0.2Zr alloy showed good overall mechanical properties,especially the elongation of the aged alloy was 58%higher than that of the Mg-9Gd-2Y-1Nd-0.2Zr alloy.The increase in ductility of the aged Mg-9Gd-2Y-3Nd-0.2Zr alloy attributed to the grain boundary precipitate promotes the formation of a large number of precipitation free zones(PFZs)with widths of 130-150 nm during ageing treatment.展开更多
The deformation behavior of hot-rolled AZ31 magnesium(Mg)alloy sheet was analyzed when subjected to uniaxial tension along its normal direction at temperatures ranging from 100 to 400℃and strain rates ranging from 0....The deformation behavior of hot-rolled AZ31 magnesium(Mg)alloy sheet was analyzed when subjected to uniaxial tension along its normal direction at temperatures ranging from 100 to 400℃and strain rates ranging from 0.5 to 100 mm/min.Based on the stress−strain curves and the dynamic material model,the hot processing map was established,which demonstrates that the power dissipation factor(η)is the most sensitive to strain rate at 400℃via absorption of dislocations.At 400℃,sample at 0.5 mm/min possessesηof 0.89 because of its lower kernel average misorientation(KAM)value of 0.51,while sample at 100 mm/min possessesηof 0.46 with a higher KAM value of 1.147.In addition,the flow stress presents a slight decrease of 25.94 MPa at 10 mm/min compared to that at 100 mm/min and 100℃.The reasons are twofold:a special~34°texture component during 100℃-100 mm/min favoring the activation of basal slip,and dynamic recrystallization(DRX)also providing softening effect to some extent by absorbing dislocations.Difference in activation of basal slip among twin laminas during 100℃-100 mm/min results in deformation inhomogeneity within the grains,which generates stress that helps matrix grains tilt to a direction favorable to basal slip,forming the special~34°texture component.展开更多
The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensiti...The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensitivity of the 7085 alloy,with the hardness difference between water quenching and air cooling increasing from 5.4%(before hot deformation)to 10.4%(after hot deformation).In the undeformed samples,the Al3Zr particles within the grains exhibit better coherent with the Al matrix.During slow quenching,only theηphase is observed on Al3Zr particles and at the grain boundaries.Hot deformation leads to a mass of recrystallization and the formation of subgrains with high dislocation density.This results in an increase in the types,quantities,and sizes of heterogeneous precipitates during quenching.In the slow quenching process,high angle grain boundaries are best for the nucleation and growth of theηphase.Secondly,a substantial quantity ofηand T phases precipitate on the non-coherent Al3Zr phase within the recrystallized grains.The locations with high dislocation density subgrains(boundaries)serve as nucleation positions for theηand T phases precipitating.Additionally,the Y phase is observed to precipitate at dislocation sites within the subgrains.展开更多
Trace amounts of Zr and V can increase the recrystallization temperature of Al-Mg-Si wrought aluminum alloys,which is expected to regulate the recrystallization grain.In this paper,trace amounts of V and Zr were added...Trace amounts of Zr and V can increase the recrystallization temperature of Al-Mg-Si wrought aluminum alloys,which is expected to regulate the recrystallization grain.In this paper,trace amounts of V and Zr were added to recycled Al-Mg-Si alloys,and their e ffects on the microstructure and mechanical properties of the cast alloys were studied by scanning electron microscopy(SEM)and synchrotron radiation X-ray tomography(SRXT).The results show that the addition of Zr significantly increases the grain sizes due to the“Zr poisoning”;V addition has no significant effect on the grain size.The morphology of Fe-rich phase gradually changes from the large Chinese-script shape to the fine short rod and curved long strip shape,and the distribution uniformity is improved with the combined addition of V and Zr.The three-dimensional(3 D)morphology of Fe-rich phase includes granular,short rod-like,simple branch and multi-branch structures.The individual addition of V and Zr has no significant effect on the morphology of Fe-rich phase;but the combined addition of V and Zr significantly increases the number and volume fraction of Fe-rich phase with small size(diameter£15μm),the number of branches in the largest Fe-rich phase is significantly reduced,resulting in the improvement of elongation.This work provides a theoretical basis for the development of new recycled Al-Mg-Si alloys in industrial application.展开更多
High-entropy alloys(HEAs)with multi-component elements have attracted significant interest since they exhibit numerous superior properties compared to traditional ones.These properties include significant energy relea...High-entropy alloys(HEAs)with multi-component elements have attracted significant interest since they exhibit numerous superior properties compared to traditional ones.These properties include significant energy release,remarkable fracture toughness,and high strength,making them promising candidates as energetic structural materials(ESMs).This paper summarizes the energy release mechanisms under dynamic impact and the mechanical behavior of TiZr-based HEAs,TiNb-based HEAs,andWbased HEA,including velocity threshold for energy release,chamber quasi-static pressure curve,energy release efficiency,interface reactions,and"self-sharpening".In addition,we propose future research directions for their energy release and mechanical behavior.展开更多
This work aimed to(i)understand conventional and pulse gas tungsten arc welding(GTAW)of AZ31B,and(ii)explore high frequency welding(100 Hz-1500 Hz).GTA welding with alternating current(AC)and direct current electrode ...This work aimed to(i)understand conventional and pulse gas tungsten arc welding(GTAW)of AZ31B,and(ii)explore high frequency welding(100 Hz-1500 Hz).GTA welding with alternating current(AC)and direct current electrode positive(DCEP)polarities yielded crack-free partial penetration welds for6 mm thick AZ31B alloy sheet.Welding under direct current electrode negative(DCEN)polarity with identical parameters as that for AC and DCEP resulted in full penetration welds that had microcracks.Defect-free full-penetration welds could be accomplished with pulse GTA welding using DCEN polarity at a pulse frequency of 1 Hz with a pulse duration ratio of 1:1.The resultant DCEN P 1:1 weld metal had a microstructure finer than the conventional DCEN weld.Welds produced with pulse duration ratios of 1:2and 1:4 lacked penetration but had a much finer microstructures because of the lower heat input.The arc constriction by the high frequency pulsing in the Activ Arc■-High frequency(AA-HF)mode welding was responsible for deeper penetration.Welds produced under DCEN pulsing and AA-HF conditions had hardness higher than conventional DCEN,DCEP and AC GTA welds,attributed to the finer microstructure.AA-HF GTA welding produced defect free deeper penetration welds with good microstructural features/mechanical properties and also gave an advantage of 50%enhanced productivity when welded at1500 Hz.展开更多
The asymmetric creep aging behaviors of a pre-treated Al-Zn-Mg-Cu alloy under high and low stresses have been investigated for high precision creep age forming application of aluminum integral panels.With the increase...The asymmetric creep aging behaviors of a pre-treated Al-Zn-Mg-Cu alloy under high and low stresses have been investigated for high precision creep age forming application of aluminum integral panels.With the increase of applied stress,the creep strains under the tensile stresses are higher than those of compressive stresses and the asymmetry of creep strain is more obvious.However,the mechanical properties of tensile stress creep aged samples are lower than those of compressive stress creep aged samples.Dislocation density,dislocation moving velocity and the proportion of precipitates directly lead to the asymmetry of creep strain and mechanical properties after tensile-compressive creep aging process.In addition,the tensile and compressive stresses have little effect on the width of the precipitate-free zone(PFZ).It indicates that in the high stress creep age forming process of the pretreated Al-Zn-Mg-Cu alloy,the tensile stress promotes the dislocation motion to obtain a better creep strain but weakens its mechanical properties compared with the compressive stress.In the field of civil aviation aircraft component manufacturing,the introduction of tension and compression stress asymmetry into the creep constitutive model may improve the accuracy of creep age forming components.展开更多
In this study, to meet the development and application requirements for high-strength and hightoughness energetic structural materials, a representative volume element of a TA15 matrix embedded with a TaZrNb sphere wa...In this study, to meet the development and application requirements for high-strength and hightoughness energetic structural materials, a representative volume element of a TA15 matrix embedded with a TaZrNb sphere was designed and fabricated via diffusion bonding. The mechanisms of the microstructural evolution of the TaZrNb/TA15 interface were investigated via SEM, EBSD, EDS, and XRD.Interface mechanical property tests and in-situ tensile tests were conducted on the sphere-containing structure, and an equivalent tensile-strength model was established for the structure. The results revealed that the TA15 titanium alloy and joint had high density and no pores or cracks. The thickness of the planar joint was approximately 50-60 μm. The average tensile and shear strengths were 767 MPa and 608 MPa, respectively. The thickness of the spherical joint was approximately 60 μm. The Zr and Nb elements in the joint diffused uniformly and formed strong bonds with Ti without forming intermetallic compounds. The interface exhibited submicron grain refinement and a concave-convex interlocking structure. The tensile fracture surface primarily exhibited intergranular fracture combined with some transgranular fracture, which constituted a quasi-brittle fracture mode. The shear fracture surface exhibited brittle fracture with regular arrangements of furrows. Internal fracture occurred along the spherical interface, as revealed by advanced in-situ X-ray microcomputed tomography. The experimental results agreed well with the theoretical predictions, indicating that the high-strength interface contributes to the overall strength and toughness of the sphere-containing structure.展开更多
This study systematically investigates the mechanical response characteristics of Mo-10Cu pseudo-alloy under various conditions,including temperatures ranging from 298 K to 550 K,strain rates from1×10^(-2)s^(-1)t...This study systematically investigates the mechanical response characteristics of Mo-10Cu pseudo-alloy under various conditions,including temperatures ranging from 298 K to 550 K,strain rates from1×10^(-2)s^(-1)to 5.2×10^(3)s^(-1),and dynamic impact loads from 134 m/s to 837 m/s.The investigation is conducted using a combination of multi-method crossover experiment and numerical simulations,with accuracy validated through X-ray testing and static penetration test.Using a universal testing machine,Split-Hopkinson Pressure Bar(SHPB)system,and a light-gas gun,the dynamic constitutive behavior and shock adiabatic curves of the alloy under complex loading conditions are revealed.Experimental results demonstrate that the flow stress evolution of Mo-10Cu alloy exhibits significant strain hardening,and strain-rate strengthening.Based on these observations,a Johnson-Cook(J-C)constitutive model has been developed to describe the material's dynamic behavior.Through free-surface particle velocity measurements,the shock adiabatic relationship was obtained,and a Gruneisen equation of state was established.X-ray experimental results confirm that the Mo-10Cu liner can generate well-formed,cohesive jets.The penetration test results show that the maximum penetration depth can reach243.10 mm.The maximum error between the numerical simulation and the X-ray test is less than 7.70%,and the error with the penetration test is 4.73%,which confirms the accuracy of the constitutive parameters and the state equation.In conclusion,the proposed J-C model and Gruneisen equation effectively predict the dynamic response and jet formation characteristics of Mo-10Cu alloy under extreme loads.This work provides both theoretical support and experimental data for material design and performance optimization in shaped charge applications.展开更多
In the present study,the mechanical and ballistic properties of friction stir welded(FSW)aluminum alloy(AA5754)samples were investigated,both untreated and cryogenically treated,when impacted by a 7.62 mm armour-pierc...In the present study,the mechanical and ballistic properties of friction stir welded(FSW)aluminum alloy(AA5754)samples were investigated,both untreated and cryogenically treated,when impacted by a 7.62 mm armour-piercing(AP)bullet at an impact velocity of 682±20 m/s.The FSW technique was used to prepare the welded samples for AA5754,with an axial force of 7 kN,a feed rate of 20 mm/min,and a speed of 1200 rpm.The cryogenic treatments performed after welding,including deep cryogenic treatment(DCT)at196℃ and shallow cryogenic treatment(SCT)at80℃,for 6 and 72 h,respectively.The microstructure and mechanical characteristics of cryogenically treated and untreated joints were examined.The cryogenic treatment refined the grain size(1.05 μm)and enhanced the microhardness(93 Hv).Moreover,DCT-FSW significantly improved the tensile strength(13.93%)and impact strength(8.45%)compared to untreated FSW sample.Additionally,in untreated FSW samples,the fracture behaviour varied:the impact fracture mode primarily exhibited ductile failure,while the tensile fracture exhibited a mixed fracture mode.In contrast,the tensile and impact fracture modes of the DCT-FSWwere dominated by a ductile failure mode.The DCT-FSW target demonstrated a lower depth of penetration(DOP)of 31 mm compared to the SCT-FSWand untreated FSW targets.Post-ballistic SEM analysis in the crater region of all three zones revealed the formation of frictional grooves,small cracks,and adiabatic shear bands(ASBs).展开更多
In this work,the effect of ultrasonic vibration modes on the mechanical properties and relaxation of residual stress in 6061-T6 aluminum alloy was studied.A new ultrasonic vibration Johnson-Cook model was proposed,and...In this work,the effect of ultrasonic vibration modes on the mechanical properties and relaxation of residual stress in 6061-T6 aluminum alloy was studied.A new ultrasonic vibration Johnson-Cook model was proposed,and the relaxation and distribution of residual stress under ultrasonic vibration were predicted and analyzed using the finite element method(FEM).The mechanical properties of 6061-T6 aluminum alloy under different ultrasonic vibration modes were analyzed through experiments involving notched specimen tensile testing and scanning electron microscopy(SEM)analysis.The findings indicate that ultrasonic vibration treatment during deformation,unloading,and load-holding,as well as treatment with its natural ultrasonic frequency,can effectively release residual stress;however,treatment with its natural frequency has the highest rate of release up to 65.4%.Ultrasonic vibration treatment during deformation better inhibits fracture under the same conditions.The FEM results are in good agreement with the experimental results,and it can be used as a valid tool for predicting residual stress release under ultrasonic vibration.展开更多
The effects of Yb/Zr micro-alloying on the microstructure,mechanical properties,and corrosion resistance of an Al-Zn-Mg-Cu alloy were systematically investigated.Upon the addition of Yb/Zr to the Al-Zn-Mg-Cu alloy,the...The effects of Yb/Zr micro-alloying on the microstructure,mechanical properties,and corrosion resistance of an Al-Zn-Mg-Cu alloy were systematically investigated.Upon the addition of Yb/Zr to the Al-Zn-Mg-Cu alloy,the grain boundaries were pinned by high-density nanosized Al_(3)(Yb,Zr)precipitates during extrusion deformation,consequently,the average grain size was significantly reduced from 232.7μm to 3.2μm.This grain refinement contributed substantially to the improvement in both strength and elongation.The ultimate tensile strength,yield strength,and elongation of the Yb/Zr modified alloy increased to 705.3 MPa,677.6 MPa,and 8.7%,respectively,representing enhancements of 16.2%,19.3%,and 112.2%compared to the unmodified alloy.Moreover,the distribution of MgZn_(2)phases along grain boundaries became more discontinuous in the Yb/Zr modified alloy,which effectively retarded the propagation of intergranular corrosion and improved the corrosion resistance.展开更多
基金financially supported by the Key Research and Development Program of Ningbo(Grant No.2023Z098)Natural Science Foundation of Inner Mongolia(Grant No.2023MS05040)+1 种基金Shenyang Collaborative Innovation Center Project for Multiple Energy Fields Composite Processing of Special Materials(Grant No.JG210027)Shenyang Key Technology Special Project of The Open Competition Mechanism to Select the Best Solution(Grant Nos.2022210101000827,2022-0-43-048).
文摘Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other fields.In recent years,with the continuous increase in demand for medium-thick plate titanium alloys,corresponding welding technologies have also continued to develop.Therefore,this article reviews the research progress of deep penetration welding technology for medium-thick plate titanium alloys,mainly covering traditional arc welding,high-energy beam welding,and other welding technologies.Among many methods,narrow gap welding,hybrid welding,and external energy field assistance welding all contribute to improving the welding efficiency and quality of medium-thick plate titanium alloys.Finally,the development trend of deep penetration welding technology for mediumthick plate titanium alloys is prospected.
文摘The effects of different warm rolling(WR)reductions on the microstructure and mechanical properties of low-Cr FeCrAl alloys at both room and elevated temperatures were investigated.The study revealed that when the WR reduction is small,it effectively refines the grains and forms a large number of subgrains in the matrix,while also inducing the dissolution of the Laves phase.This enhances the mechanical properties of FeCrAl alloys primarily through grain refinement and solid solution strengthening.Conversely,with larger WR reductions,the grain refinement effect diminishes,but a significant number of Laves phases form in the matrix,strengthening the alloys primarily through precipitation strengthening.WR exhibited a remarkable enhancing effect on the comprehensive mechanical properties at both room and high temperatures,with a signi-ficant enhancement in ductility at high temperatures.Notably,a 10%WR reduction resulted in the optimal overall mechanical properties at both room and elevated temperatures.
文摘High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and process optimization,characterized by low efficiency and high costs.The integration of Artificial Intelligence(AI)technologies has provided innovative solutions for HEAs research.This review presented a detailed overview of recent advancements in AI applications for structural modeling and mechanical property prediction of HEAs.Furthermore,it discussed the advantages of big data analytics in facilitating alloy composition design and screening,quality control,and defect prediction,as well as the construction and sharing of specialized material databases.The paper also addressed the existing challenges in current AI-driven HEAs research,including issues related to data quality,model interpretability,and cross-domain knowledge integration.Additionally,it proposed prospects for the synergistic development of AI-enhanced computational materials science and experimental validation systems.
文摘Al-Cu-Mg-Ag alloys have become a research hotspot because of its good heat resistance.Its excellent mechanical properties are inseparable from the regulation of the structure by researchers.The method of material structure simulation has become more and more perfect.This study employs numerical simulation to investigate the microstructure evolution of Al-Cu-Mg-Ag alloys during solidification with the aim of controlling its structure.The size distribution of Ti-containing particles in an Al-Ti-B master alloy was characterized via microstructure observation,serving as a basis for optimizing the nucleation density parameters for particles of varying radii in the phase field model.The addition of refiner inhibited the growth of dendrites and no longer produced coarse dendrites.With the increase of refiner,the grains gradually tended to form cellular morphology.The refined grains were about 100μm in size.Experimental validation of the simulated as-cast grain morphology was conducted.The samples were observed by metallographic microscope and scanning electron microscope.The addition of refiner had a significant effect on the refinement of the alloy,and the average grain size after refinement was also about 100μm.At the same time,the XRD phase identification of the alloy was carried out.The observation of the microstructure morphology under the scanning electron microscope showed that the precipitated phase was mainly concentrated on the grain boundary.The Al_(2)Cu accounted for about 5%,and the matrix phase FCC accounted for about 95%,which also corresponded well with the simulation results.
基金Project(52105351)supported by the National Natural Science Foundation of ChinaProject(24KJA460002)supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,ChinaProject(G2023014009L)supported by the High-end Foreign Experts Recruitment Plan of China。
文摘High-entropy alloys(HEAs)have become essential materials in the aerospace and defense industries due to their remarkable mechanical properties,which include wear resistance,fatigue endurance,and corrosion resistance.The welding of high-entropy alloys is a cutting-edge field of study that is attracting a lot of interest and investigation from research organizations and businesses.Welding defects including porosity and cracks are challenging problem and limit the development of welding HEAs.This paper provides a comprehensive review of research on weldability of HEAs and the application of diverse welding techniques on welding HEAs over recent years.The forming mechanism and control strategies of defects during welding HEAs were provided in this work.Various welding techniques,including arc welding,laser welding,electron beam welding,friction stir welding,diffusion bonding and explosive welding,have been extensively investigated and applied to improve the microstructure and mechanical properties of HEAs joints.Furthermore,an in-depth review of the microstructure and mechanical properties of HEAs joints obtained by various welding methods is presented.This paper concludes with a discussion of the potential challenges associated with high-entropy alloy welding,thus providing valuable insights for future research efforts in this area.
基金Project(52374395) supported by the National Natural Science Foundations of ChinaProjects(20210302123135,20210302123163) supported by the Natural Science Foundation of Shanxi Province,China+2 种基金Projects(YDZJSX20231B003,YDZJSX2021A010) supported by the Central Government Guided Local Science and Technology Development Projects,ChinaProject(2022M710541) supported by the China Postdoctoral Science FoundationProjects(202104021301022,202204021301009) supported by the Scientific and Technological Achievements Transformation Guidance Special Project of Shanxi Province,China。
文摘To weaken the basal texture and in-plane anisotropy of magnesium alloy, non-basal slips are pre-enhanced by pre-rolling with a single pass larger strain reduction at elevated temperatures. Then Mg alloy sheets with the thickness of 1 mm are achieved after five passes rolling at 300 ℃. A double peak and disperse basal texture is generated after pre- rolling at higher temperatures when the non-basal slips are more active. So, the texture intensity of pre-rolled samples is reduced. Moreover, the distribution condition of in-grain misorientation axes (a method to analyze the activation of slips) shows that the pyramidal slip is quite active during deformation. After annealing on final rolled sheets, the texture distributions are changed and the intensity of texture reduces obviously due to static recrystallization. In particular, the r-value and in-plane anisotropy of pre-rolled samples are obviously lower than those of sample without pre-rolling.
基金Project(52274369)supported by the National Natural Science Foundation of ChinaProject(623020034)supported by the National Key Laboratory of Science and Technology on High-strength Structural Materials,China。
文摘The pronounced anisotropy in mechanical properties presents a major obstacle to the extensive application of aluminum-lithium(Al-Li)alloys,primarily attributed to heterogeneous precipitate distribution,grain structure variations,and crystallographic texture.This study investigates the impact of pre-thermal treatment prior to hot rolling and aging treatment on the anisotropy of mechanical properties of 2195 alloy sheet fabricated by gas atomization,hot pressing and hot rolling.The results demonstrate that pre-treatment at 450℃for 4 h promotes finer and more uniform distribution of precipitates,effectively mitigating mechanical anisotropy of the alloy sheet.Additionally,this treatment facilitates recrystallization during hot rolling,further reducing mechanical anisotropy.The in-plane anisotropy(IPA)factors for ultimate tensile strength(UTS)and yield strength(YS)are 1.15%and 0.77%,respectively.Subsequent aging treatment enhances grain refinement and the uniformity of the T_(1) phase,suppresses the formation of precipitation-free zones(PFZs),significantly improving the strength and toughness of the alloy sheet.After peak aging at 165℃for 48 h,the alloy sheet exhibits YS of 547 MPa,UTS of 590 MPa,and elongation(EL)of 7.7%.
基金Project(U2067217)supported by the National Natural Science Foundation of ChinaProject(SASTIND)supported by the State Administration of Science,Technology and Industry for National Defense,ChinaProject(2020M683572)supported by China Postdoctoral Science Foundation。
文摘The influence of grain size or grain refinement on the corrosion of Zr alloy is clarified by employing a series of electrochemical analyses and characterization techniques.The corrosion resistance,as a function of exposure time,F−concentration,and solution temperatures,of Zr alloys with different grain sizes is ascertained.The results confirm that refining the grain size can effectively enhance the short-time corrosion properties of Zr alloy in HNO_(3) with F−.The fine grained Zr alloy(~10μm in diameter)consistently exhibits a lower corrosion current density,ranging from 18%to 46%lower than that of the coarse-grained Zr alloy(~44μm).The enhanced corrosion resistance is attributed to the high density grain boundaries,which promote oxide stability,and accelerate the creation of the protective layer.The high corrosion rate and pseudo-passivation behavior of Zr alloys in fluorinated nitric acid originate from the accelerated“dissolution-passivation”of the oxide film.However,the grain refinement does not provide enduring anti-corrosion for Zr alloys.To meet the operation of spent fuel reprocessing,additional systematic efforts are required to evaluate the long term effect of grain refinement.
基金Project(2021YFB3701103) supported by the National Key R&D Program of China。
文摘An increase in RE element content in Mg alloys promotes the grain boundary precipitate,which affects the mechanical properties.However,the influence of grain boundary precipitates on microstructure of Mg-RE alloys during ageing and their role on ductility of the aged alloy is unclear.In this work,hot extrusion and ageing treatment were performed for Mg-9Gd-2Y-xNd-0.2Zr(x=1 wt.%and 3 wt.%)alloys,and grain boundary precipitates were formed in the extruded Mg-9Gd-2Y-3Nd-0.2Zr alloy due to the increase of Nd content.The extruded alloys exhibit a complete dynamic recrystallization(DRX)microstructure and a texture with the<0001>orientation parallel to the extrusion direction(ED).In addition,a large amount of fiber microstructures distributed by the second phase along the ED were formed in the Mg-9Gd-2Y-3Nd-0.2Zr alloy,while only a small amount of the second phase was observed in the Mg-9Gd-2Y-1Nd-0.2Zr alloy.After ageing treatment,a large amount ofβ'phase precipitated inside the grains.The strength of the Mg-9Gd-2Y-1Nd-0.2Zr alloy increased from 202 MPa to 275 MPa but the elongation decreased from 12.8%to 2.6%,and the strength of the Mg-9Gd-2Y-3Nd-0.2Zr alloy increased from 212 MPa to 281 MPa but the elongation decreased from 13.7%to 6.2%.Among them,the Mg-9Gd-2Y-3Nd-0.2Zr alloy showed good overall mechanical properties,especially the elongation of the aged alloy was 58%higher than that of the Mg-9Gd-2Y-1Nd-0.2Zr alloy.The increase in ductility of the aged Mg-9Gd-2Y-3Nd-0.2Zr alloy attributed to the grain boundary precipitate promotes the formation of a large number of precipitation free zones(PFZs)with widths of 130-150 nm during ageing treatment.
基金Project(52005362) supported by the National Natural Science Foundation of ChinaProjects(202303021221005,202303021211045) supported by the Natural Science Foundation of Shanxi Province,China+1 种基金Project(202402003) supported by the Patent Commercialization Program of Shanxi Province,ChinaProject supported by the Key Research and Development Plan of Xinzhou City,China。
文摘The deformation behavior of hot-rolled AZ31 magnesium(Mg)alloy sheet was analyzed when subjected to uniaxial tension along its normal direction at temperatures ranging from 100 to 400℃and strain rates ranging from 0.5 to 100 mm/min.Based on the stress−strain curves and the dynamic material model,the hot processing map was established,which demonstrates that the power dissipation factor(η)is the most sensitive to strain rate at 400℃via absorption of dislocations.At 400℃,sample at 0.5 mm/min possessesηof 0.89 because of its lower kernel average misorientation(KAM)value of 0.51,while sample at 100 mm/min possessesηof 0.46 with a higher KAM value of 1.147.In addition,the flow stress presents a slight decrease of 25.94 MPa at 10 mm/min compared to that at 100 mm/min and 100℃.The reasons are twofold:a special~34°texture component during 100℃-100 mm/min favoring the activation of basal slip,and dynamic recrystallization(DRX)also providing softening effect to some extent by absorbing dislocations.Difference in activation of basal slip among twin laminas during 100℃-100 mm/min results in deformation inhomogeneity within the grains,which generates stress that helps matrix grains tilt to a direction favorable to basal slip,forming the special~34°texture component.
基金Project(52205421)supported by the National Natural Science Foundation of ChinaProject(AA23023028)supported by the Guangxi Science and Technology Major Project,China+2 种基金Projects(2022B0909070001,2020B010186001)supported by the Key Research and Development Projects of Guangdong Province,ChinaProject(2021B0101220006)supported by the Guangdong Key Areas Research and Development Program“Chip,Software and Computing”Major Project,ChinaProjects(2021RC2087,2022JJ30570)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensitivity of the 7085 alloy,with the hardness difference between water quenching and air cooling increasing from 5.4%(before hot deformation)to 10.4%(after hot deformation).In the undeformed samples,the Al3Zr particles within the grains exhibit better coherent with the Al matrix.During slow quenching,only theηphase is observed on Al3Zr particles and at the grain boundaries.Hot deformation leads to a mass of recrystallization and the formation of subgrains with high dislocation density.This results in an increase in the types,quantities,and sizes of heterogeneous precipitates during quenching.In the slow quenching process,high angle grain boundaries are best for the nucleation and growth of theηphase.Secondly,a substantial quantity ofηand T phases precipitate on the non-coherent Al3Zr phase within the recrystallized grains.The locations with high dislocation density subgrains(boundaries)serve as nucleation positions for theηand T phases precipitating.Additionally,the Y phase is observed to precipitate at dislocation sites within the subgrains.
基金Project(2024YEE0109100) supported by the National Key R&D Program of ChinaProjects(52074131,52104373) supported by the National Natural Science Foundation of ChinaProjects(2022YFJH001,2024YFJH001) supported by the Science and Technology Plan Program of Qingyuan City,China。
文摘Trace amounts of Zr and V can increase the recrystallization temperature of Al-Mg-Si wrought aluminum alloys,which is expected to regulate the recrystallization grain.In this paper,trace amounts of V and Zr were added to recycled Al-Mg-Si alloys,and their e ffects on the microstructure and mechanical properties of the cast alloys were studied by scanning electron microscopy(SEM)and synchrotron radiation X-ray tomography(SRXT).The results show that the addition of Zr significantly increases the grain sizes due to the“Zr poisoning”;V addition has no significant effect on the grain size.The morphology of Fe-rich phase gradually changes from the large Chinese-script shape to the fine short rod and curved long strip shape,and the distribution uniformity is improved with the combined addition of V and Zr.The three-dimensional(3 D)morphology of Fe-rich phase includes granular,short rod-like,simple branch and multi-branch structures.The individual addition of V and Zr has no significant effect on the morphology of Fe-rich phase;but the combined addition of V and Zr significantly increases the number and volume fraction of Fe-rich phase with small size(diameter£15μm),the number of branches in the largest Fe-rich phase is significantly reduced,resulting in the improvement of elongation.This work provides a theoretical basis for the development of new recycled Al-Mg-Si alloys in industrial application.
基金the funding from the Overseas Young Talents Program(22GAA00842)the Hebei Natural Science Foundation(E2024105032)+4 种基金the Youth Academic Startup Program at Beijing Institute of Technology(RCPT-6120210286)the"National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact(No.WDZC2022-1)""National Natural Science Foundation of China(No.52271141)"the support of"National Natural Science Foundation of China(Grant No.12222204 and 12072045)"the support of"National Natural Science Foundation of China(Grant No.52331006)".
文摘High-entropy alloys(HEAs)with multi-component elements have attracted significant interest since they exhibit numerous superior properties compared to traditional ones.These properties include significant energy release,remarkable fracture toughness,and high strength,making them promising candidates as energetic structural materials(ESMs).This paper summarizes the energy release mechanisms under dynamic impact and the mechanical behavior of TiZr-based HEAs,TiNb-based HEAs,andWbased HEA,including velocity threshold for energy release,chamber quasi-static pressure curve,energy release efficiency,interface reactions,and"self-sharpening".In addition,we propose future research directions for their energy release and mechanical behavior.
文摘This work aimed to(i)understand conventional and pulse gas tungsten arc welding(GTAW)of AZ31B,and(ii)explore high frequency welding(100 Hz-1500 Hz).GTA welding with alternating current(AC)and direct current electrode positive(DCEP)polarities yielded crack-free partial penetration welds for6 mm thick AZ31B alloy sheet.Welding under direct current electrode negative(DCEN)polarity with identical parameters as that for AC and DCEP resulted in full penetration welds that had microcracks.Defect-free full-penetration welds could be accomplished with pulse GTA welding using DCEN polarity at a pulse frequency of 1 Hz with a pulse duration ratio of 1:1.The resultant DCEN P 1:1 weld metal had a microstructure finer than the conventional DCEN weld.Welds produced with pulse duration ratios of 1:2and 1:4 lacked penetration but had a much finer microstructures because of the lower heat input.The arc constriction by the high frequency pulsing in the Activ Arc■-High frequency(AA-HF)mode welding was responsible for deeper penetration.Welds produced under DCEN pulsing and AA-HF conditions had hardness higher than conventional DCEN,DCEP and AC GTA welds,attributed to the finer microstructure.AA-HF GTA welding produced defect free deeper penetration welds with good microstructural features/mechanical properties and also gave an advantage of 50%enhanced productivity when welded at1500 Hz.
基金Project(2021YFB3400900)supported by the National Key R&D Program of ChinaProjects(51905551,52205435)supported by the National Natural Science Foundation of China Youth Foundation+1 种基金Project(2022ZZTS0196)supported by the Fundamental Research Founds for the Central Universities,ChinaProject(CX20220282)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China。
文摘The asymmetric creep aging behaviors of a pre-treated Al-Zn-Mg-Cu alloy under high and low stresses have been investigated for high precision creep age forming application of aluminum integral panels.With the increase of applied stress,the creep strains under the tensile stresses are higher than those of compressive stresses and the asymmetry of creep strain is more obvious.However,the mechanical properties of tensile stress creep aged samples are lower than those of compressive stress creep aged samples.Dislocation density,dislocation moving velocity and the proportion of precipitates directly lead to the asymmetry of creep strain and mechanical properties after tensile-compressive creep aging process.In addition,the tensile and compressive stresses have little effect on the width of the precipitate-free zone(PFZ).It indicates that in the high stress creep age forming process of the pretreated Al-Zn-Mg-Cu alloy,the tensile stress promotes the dislocation motion to obtain a better creep strain but weakens its mechanical properties compared with the compressive stress.In the field of civil aviation aircraft component manufacturing,the introduction of tension and compression stress asymmetry into the creep constitutive model may improve the accuracy of creep age forming components.
基金supported by the National Natural Science Foundation of China(Grant No.12372351).
文摘In this study, to meet the development and application requirements for high-strength and hightoughness energetic structural materials, a representative volume element of a TA15 matrix embedded with a TaZrNb sphere was designed and fabricated via diffusion bonding. The mechanisms of the microstructural evolution of the TaZrNb/TA15 interface were investigated via SEM, EBSD, EDS, and XRD.Interface mechanical property tests and in-situ tensile tests were conducted on the sphere-containing structure, and an equivalent tensile-strength model was established for the structure. The results revealed that the TA15 titanium alloy and joint had high density and no pores or cracks. The thickness of the planar joint was approximately 50-60 μm. The average tensile and shear strengths were 767 MPa and 608 MPa, respectively. The thickness of the spherical joint was approximately 60 μm. The Zr and Nb elements in the joint diffused uniformly and formed strong bonds with Ti without forming intermetallic compounds. The interface exhibited submicron grain refinement and a concave-convex interlocking structure. The tensile fracture surface primarily exhibited intergranular fracture combined with some transgranular fracture, which constituted a quasi-brittle fracture mode. The shear fracture surface exhibited brittle fracture with regular arrangements of furrows. Internal fracture occurred along the spherical interface, as revealed by advanced in-situ X-ray microcomputed tomography. The experimental results agreed well with the theoretical predictions, indicating that the high-strength interface contributes to the overall strength and toughness of the sphere-containing structure.
基金funded by the China Postdoctoral Science Foundation(Grant No.2022M721614)。
文摘This study systematically investigates the mechanical response characteristics of Mo-10Cu pseudo-alloy under various conditions,including temperatures ranging from 298 K to 550 K,strain rates from1×10^(-2)s^(-1)to 5.2×10^(3)s^(-1),and dynamic impact loads from 134 m/s to 837 m/s.The investigation is conducted using a combination of multi-method crossover experiment and numerical simulations,with accuracy validated through X-ray testing and static penetration test.Using a universal testing machine,Split-Hopkinson Pressure Bar(SHPB)system,and a light-gas gun,the dynamic constitutive behavior and shock adiabatic curves of the alloy under complex loading conditions are revealed.Experimental results demonstrate that the flow stress evolution of Mo-10Cu alloy exhibits significant strain hardening,and strain-rate strengthening.Based on these observations,a Johnson-Cook(J-C)constitutive model has been developed to describe the material's dynamic behavior.Through free-surface particle velocity measurements,the shock adiabatic relationship was obtained,and a Gruneisen equation of state was established.X-ray experimental results confirm that the Mo-10Cu liner can generate well-formed,cohesive jets.The penetration test results show that the maximum penetration depth can reach243.10 mm.The maximum error between the numerical simulation and the X-ray test is less than 7.70%,and the error with the penetration test is 4.73%,which confirms the accuracy of the constitutive parameters and the state equation.In conclusion,the proposed J-C model and Gruneisen equation effectively predict the dynamic response and jet formation characteristics of Mo-10Cu alloy under extreme loads.This work provides both theoretical support and experimental data for material design and performance optimization in shaped charge applications.
文摘In the present study,the mechanical and ballistic properties of friction stir welded(FSW)aluminum alloy(AA5754)samples were investigated,both untreated and cryogenically treated,when impacted by a 7.62 mm armour-piercing(AP)bullet at an impact velocity of 682±20 m/s.The FSW technique was used to prepare the welded samples for AA5754,with an axial force of 7 kN,a feed rate of 20 mm/min,and a speed of 1200 rpm.The cryogenic treatments performed after welding,including deep cryogenic treatment(DCT)at196℃ and shallow cryogenic treatment(SCT)at80℃,for 6 and 72 h,respectively.The microstructure and mechanical characteristics of cryogenically treated and untreated joints were examined.The cryogenic treatment refined the grain size(1.05 μm)and enhanced the microhardness(93 Hv).Moreover,DCT-FSW significantly improved the tensile strength(13.93%)and impact strength(8.45%)compared to untreated FSW sample.Additionally,in untreated FSW samples,the fracture behaviour varied:the impact fracture mode primarily exhibited ductile failure,while the tensile fracture exhibited a mixed fracture mode.In contrast,the tensile and impact fracture modes of the DCT-FSWwere dominated by a ductile failure mode.The DCT-FSW target demonstrated a lower depth of penetration(DOP)of 31 mm compared to the SCT-FSWand untreated FSW targets.Post-ballistic SEM analysis in the crater region of all three zones revealed the formation of frictional grooves,small cracks,and adiabatic shear bands(ASBs).
基金Project(51775480)supported by the National Natural Science Foundation of ChinaProjects(E2018203143,E2022203050)supported by the Natural Science Foundation of Hebei Province,China。
文摘In this work,the effect of ultrasonic vibration modes on the mechanical properties and relaxation of residual stress in 6061-T6 aluminum alloy was studied.A new ultrasonic vibration Johnson-Cook model was proposed,and the relaxation and distribution of residual stress under ultrasonic vibration were predicted and analyzed using the finite element method(FEM).The mechanical properties of 6061-T6 aluminum alloy under different ultrasonic vibration modes were analyzed through experiments involving notched specimen tensile testing and scanning electron microscopy(SEM)analysis.The findings indicate that ultrasonic vibration treatment during deformation,unloading,and load-holding,as well as treatment with its natural ultrasonic frequency,can effectively release residual stress;however,treatment with its natural frequency has the highest rate of release up to 65.4%.Ultrasonic vibration treatment during deformation better inhibits fracture under the same conditions.The FEM results are in good agreement with the experimental results,and it can be used as a valid tool for predicting residual stress release under ultrasonic vibration.
基金Project(51501228)supported by the National Natural Science Foundation of ChinaProject(202109)supported by the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,China。
文摘The effects of Yb/Zr micro-alloying on the microstructure,mechanical properties,and corrosion resistance of an Al-Zn-Mg-Cu alloy were systematically investigated.Upon the addition of Yb/Zr to the Al-Zn-Mg-Cu alloy,the grain boundaries were pinned by high-density nanosized Al_(3)(Yb,Zr)precipitates during extrusion deformation,consequently,the average grain size was significantly reduced from 232.7μm to 3.2μm.This grain refinement contributed substantially to the improvement in both strength and elongation.The ultimate tensile strength,yield strength,and elongation of the Yb/Zr modified alloy increased to 705.3 MPa,677.6 MPa,and 8.7%,respectively,representing enhancements of 16.2%,19.3%,and 112.2%compared to the unmodified alloy.Moreover,the distribution of MgZn_(2)phases along grain boundaries became more discontinuous in the Yb/Zr modified alloy,which effectively retarded the propagation of intergranular corrosion and improved the corrosion resistance.