Elemental doping is an effective strategy for tuning the band structure of graphite carbon nitride(CN)to enhance its photocatalytic performance.In this study,sodium(Na)and oxygen(O)co-doped carbon nitride(Na/O-CN_(x),...Elemental doping is an effective strategy for tuning the band structure of graphite carbon nitride(CN)to enhance its photocatalytic performance.In this study,sodium(Na)and oxygen(O)co-doped carbon nitride(Na/O-CN_(x),x=1.0,2.0,3.0,4.0)was synthesized via solid-phase reaction of sodium citrate(NaCA)and pure CN powder in the Teflon-sealed autoclave under air conditions at 180℃.Surface area of Na/O-CN_(3.0) is measured to be 18.8 m^(2)/g,increasing by 60.7%compared to that of pure CN(11.7 m^(2)/g).Bandgap energy of Na/O-CN_(3.0) is determined to be 2.68 eV,marginally lower than that of pure CN(2.70 eV),thereby enhancing its capacity for sunlight absorption.Meanwhile,the incorporation of Na and O atoms into Na/O-CN_(x) is found to effectively reduce recombination rates of photogenerated electron-hole pairs.As a result,Na/O-CN_(x) samples exhibit markedly enhanced photocatalytic hydrogen evolution activity under visible light irradiation.Notably,the optimal Na/O-CN_(3.0) sample achieves a photocatalytic hydrogen production rate of 103.2μmol·g^(–1)·h^(–1),which is 8.2 times greater than that of pure CN(11.2μmol·g^(–1)·h^(–1)).Furthermore,a series of Na/O-CN_(x)-yO_(2)(y=0,20%,40%,60%,80%,100%)samples were prepared by modulating the oxygen content within reaction atmosphere.The catalytic performance evaluations reveal that the incorporation of both Na and O atoms in Na/O-CN_(3.0) enhances photocatalytic activity.This study also introduces novel methodologies for synthesis of metal atom-doped CN materials at lower temperature,highlighting the synergistic effect of Na and O atoms in photocatalytic hydrogen production of Na/O-CN_(x) samples.展开更多
基金National Natural Science Foundation of China(21806023)Natural Science Foundation of Hunan Province(2021JJ40199)+2 种基金Education Department Foundation of Hunan Province(20C0813)Hunan University of Science and Technology Fundamental Research FundsPostgraduate Scientific Research Innovation Project of Hunan Province(CX20240877)。
文摘Elemental doping is an effective strategy for tuning the band structure of graphite carbon nitride(CN)to enhance its photocatalytic performance.In this study,sodium(Na)and oxygen(O)co-doped carbon nitride(Na/O-CN_(x),x=1.0,2.0,3.0,4.0)was synthesized via solid-phase reaction of sodium citrate(NaCA)and pure CN powder in the Teflon-sealed autoclave under air conditions at 180℃.Surface area of Na/O-CN_(3.0) is measured to be 18.8 m^(2)/g,increasing by 60.7%compared to that of pure CN(11.7 m^(2)/g).Bandgap energy of Na/O-CN_(3.0) is determined to be 2.68 eV,marginally lower than that of pure CN(2.70 eV),thereby enhancing its capacity for sunlight absorption.Meanwhile,the incorporation of Na and O atoms into Na/O-CN_(x) is found to effectively reduce recombination rates of photogenerated electron-hole pairs.As a result,Na/O-CN_(x) samples exhibit markedly enhanced photocatalytic hydrogen evolution activity under visible light irradiation.Notably,the optimal Na/O-CN_(3.0) sample achieves a photocatalytic hydrogen production rate of 103.2μmol·g^(–1)·h^(–1),which is 8.2 times greater than that of pure CN(11.2μmol·g^(–1)·h^(–1)).Furthermore,a series of Na/O-CN_(x)-yO_(2)(y=0,20%,40%,60%,80%,100%)samples were prepared by modulating the oxygen content within reaction atmosphere.The catalytic performance evaluations reveal that the incorporation of both Na and O atoms in Na/O-CN_(3.0) enhances photocatalytic activity.This study also introduces novel methodologies for synthesis of metal atom-doped CN materials at lower temperature,highlighting the synergistic effect of Na and O atoms in photocatalytic hydrogen production of Na/O-CN_(x) samples.
文摘以三聚氰胺、葡萄糖和氯化铵为原料制备一种具有高比表面积的碳氯共掺杂介孔g-C_(3)N_(4)(C-Cl-CN)光催化剂,并考察其光催化降解罗丹明B(RhB)的性能。采用XRD,XPS,SEM,UV-Vis DRS和PL测试手段表征和分析催化剂的晶型结构、化学组成及微观形貌。结果表明:C-Cl-CN具有最高的比表面积(108.7 m 2/g),降解RhB的速率常数达到0.02290 min^(-1),是纯g-C_(3)N_(4)的9.4倍,且具有良好的催化稳定性。葡萄糖和氯化铵在聚合过程中起到双气泡模板和元素掺杂剂的作用,一方面提升催化剂的比表面积,另一方面减小能带间隙,增强催化剂的光吸收性能。