期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis 被引量:1
1
作者 OROZCO-VALENCIA Ulises GáZQUEZ José L. VELA Alberto 《物理化学学报》 SCIE CAS CSCD 北大核心 2018年第6期692-698,共7页
A global and local charge transfer partitioning model,based on the cornerstone theory developed by Robert G.Parr and Robert G.Pearson,which introduces two charge transfer channels(one for accepting electrons(electroph... A global and local charge transfer partitioning model,based on the cornerstone theory developed by Robert G.Parr and Robert G.Pearson,which introduces two charge transfer channels(one for accepting electrons(electrophilic) and another for donating(nucleophilic)),is applied to the reaction of a set of indoles with 4,6-dinitrobenzofuroxan.The global analysis indicates that the prevalent electron transfer mechanism in the reaction is a nucleophilic one on the indoles,i.e.,the indoles under consideration transfer electrons to 4,6-dinitrobenzofuroxan.Evaluating the reactivity descriptorswith exchange-correlation functionals including exact exchange(global hybrids) yields slightly better correlations than those obtained with generalized gradient-approximated functionals;however,the trends are preserved.Comparing the trend obtained with the number of electrons donated by the indoles,and predicted by the partitioning model,with that observed experimentally based on the measured rate constants,we propose that the number of electrons transferred through this channel can be used as a nucleophilicity scale to order the reactivity of indoles towards 4,6-dinitrobenzofuroxan.This approach to obtain reactivity scales has the advantage of depending on the intrinsic properties of the two reacting species;therefore,it opens the possibility that the same group of molecules may show different reactivity trends depending on the species with which they are reacting.The local model allows systematic incorporation of the reactive atoms based on the their decreasing condensed Fukui functions,and the correlations obtained by increasing the number of reactive atoms participating in the local analysis of the transferred nucleophilic charge improve,reaching an optimal correlation,which in the present case indicates keeping three atoms from the indoles and two from 4,6-dinitrobenzofuroxan.The atoms selected by this procedure provide valuable information about the local reactivity of the indoles.We further show that this information about the most reactive atoms on each reactant,combined with the spatial distribution of the nucleophilic and electrophilic Fukui functions of both reactants,allows one to propose non-trivial candidates of starting geometries for the search of the transition state structures present in these reactions. 展开更多
关键词 Chemical REACTIVITY CONCEPTUAL DFT Charge transfer nucleophilicity INDOLES Transition state prediction
在线阅读 下载PDF
In situ self-nucleophilic synthesis of nano-Li_(4)Ti_(5)O_(12)/reduced graphite oxide composite with mesopore-oriented porous structure for high-rate lithium ion batteries
2
作者 PAN Feng-ling MING Hai +3 位作者 CAO Gao-ping ZHANG Ting-ting ZHANG Wen-feng XIANG Yu 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期2911-2929,共19页
It is the core to improve the electron/ion transfer features of Li_(4)Ti_(5)O_(12) for achieving high-rate anode in lithium ion batteries.By directly using graphite oxide powder,nano-Li_(4)Ti_(5)O_(12)/reduced graphit... It is the core to improve the electron/ion transfer features of Li_(4)Ti_(5)O_(12) for achieving high-rate anode in lithium ion batteries.By directly using graphite oxide powder,nano-Li_(4)Ti_(5)O_(12)/reduced graphite oxide composite with mesopore-oriented porosity is prepared through one-pot facile ball-milling method in this work.Synthesis mechanism underlying the self-nucleophilic effect of oxygen-containing functional groups in graphite oxide is substantiated.Reactants can intercalate into graphite oxide bulk and in-situ generate nanoparticles.Subsequently,graphite oxide with nanoparticles generated inside can obtain a mesopore-oriented porous structure under ball-milling.Furthermore,the synergistic effects of Li_(4)Ti_(5)O_(12) nanoparticles and mesopore-oriented porosity strengthen composites with rapid Li^(+)diffusion and electron conductive frameworks.The obtained optimal LTO/GO-1.75 composite displays excellent high-rate capability(136 mA·h/g at 7000 mA/g)and good cycling stability(a capacity retention of 72%after 1000 cycles at 7000 mA/g).Additionally,the reactants concentration in this demonstrated strategy is as high as 30 wt%−40 wt%,which is over 6 times that of traditional methods with GO suspensions.It means that the strategy can significantly increase the yield,showing big potential for large-scale production. 展开更多
关键词 graphite oxide nucleophilic catalysis Li_(4)Ti_(5)O_(12) high rate anode
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部