横波可控震源振动器平板作为页岩气勘探中的关键部件,其疲劳寿命直接影响可控震源的使用寿命和勘探精度。然而,传统的振动器平板疲劳寿命优化方法未考虑平板与平板齿间焊接残余应力的影响,导致平板结构在抗疲劳优化设计方面效果不佳。为...横波可控震源振动器平板作为页岩气勘探中的关键部件,其疲劳寿命直接影响可控震源的使用寿命和勘探精度。然而,传统的振动器平板疲劳寿命优化方法未考虑平板与平板齿间焊接残余应力的影响,导致平板结构在抗疲劳优化设计方面效果不佳。为此,使用局部灵敏度法对平板疲劳寿命进行敏感性分析,确定了焊接残余应力为影响疲劳寿命的关键因素。随后,建立了平板的各向最大焊接残余应力与焊接速度和焊接层间温度之间的数学模型,并以各向最大焊接残余应力为约束,以疲劳寿命为优化目标,建立相应的优化模型。最后,利用NSGA-Ⅱ(nondominated sorting genetic algorithm-Ⅱ,非支配排序遗传算法-Ⅱ)获取Pareto解集,并结合熵权法和TOPSIS(technique for order preference by similarity to ideal solution,逼近理想解排序)法确定最佳优化方案:焊接速度为10.23 mm/s,焊接层间温度为105℃。结果表明,优化后平板的疲劳寿命为10.23年,相比优化前提高了17.72%。研究结果可为横波可控震源振动器平板的疲劳寿命优化提供科学有效的理论方法和工程指导。展开更多
调谐质量阻尼器(tuned mass damper,TMD)的减振效率与结构和TMD的固有参数相关,准确从结构-TMD耦合系统响应中识别结构和TMD固有参数是对在役TMD减振性能评价的必要条件。提出了一种基于NSGA-Ⅱ(非支配排序遗传算法,nondominated sortin...调谐质量阻尼器(tuned mass damper,TMD)的减振效率与结构和TMD的固有参数相关,准确从结构-TMD耦合系统响应中识别结构和TMD固有参数是对在役TMD减振性能评价的必要条件。提出了一种基于NSGA-Ⅱ(非支配排序遗传算法,nondominated sorting genetic algorithm)的参数识别方法,从结构-TMD耦合运动响应中识别“裸结构”和“裸TMD”的固有参数,进而实现对在役状态TMD的减振性能评估。该方法构建了结构-TMD耦合运动方程,并将其减缩和转化为结构被控模态和TMD耦合的两自由度系统,借助系统状态空间矩阵搭建两个目标函数,通过遗传算法寻找理论值与试验值的最小误差所对应的最优解,从而识别结构和TMD的固有参数。开展了单自由度结构-TMD耦合系统和多自由度结构-TMD耦合系统参数识别数值仿真分析,结果表明:提出的方法可以从耦合系统动力响应中准确识别结构和TMD的固有参数。展开更多
文摘横波可控震源振动器平板作为页岩气勘探中的关键部件,其疲劳寿命直接影响可控震源的使用寿命和勘探精度。然而,传统的振动器平板疲劳寿命优化方法未考虑平板与平板齿间焊接残余应力的影响,导致平板结构在抗疲劳优化设计方面效果不佳。为此,使用局部灵敏度法对平板疲劳寿命进行敏感性分析,确定了焊接残余应力为影响疲劳寿命的关键因素。随后,建立了平板的各向最大焊接残余应力与焊接速度和焊接层间温度之间的数学模型,并以各向最大焊接残余应力为约束,以疲劳寿命为优化目标,建立相应的优化模型。最后,利用NSGA-Ⅱ(nondominated sorting genetic algorithm-Ⅱ,非支配排序遗传算法-Ⅱ)获取Pareto解集,并结合熵权法和TOPSIS(technique for order preference by similarity to ideal solution,逼近理想解排序)法确定最佳优化方案:焊接速度为10.23 mm/s,焊接层间温度为105℃。结果表明,优化后平板的疲劳寿命为10.23年,相比优化前提高了17.72%。研究结果可为横波可控震源振动器平板的疲劳寿命优化提供科学有效的理论方法和工程指导。