Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe...Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.展开更多
In this paper,a space-time adaptive processing(STAP)method is proposed for the airborne radar with the array amplitude-phase error considered,which is based on atomic norm minimization(ANM).In the conventional ANM-bas...In this paper,a space-time adaptive processing(STAP)method is proposed for the airborne radar with the array amplitude-phase error considered,which is based on atomic norm minimization(ANM).In the conventional ANM-based STAP method,the influence of the array amplitude-phase error is not considered and restrained,which inevitably causes performance deterioration.To solve this problem,the array amplitude-phase error is firstly estimated.Then,by pre-estimating the array amplitude-phase error information,a modified ANM model is built,in which the array amplitude-phase error factor is separated from the clutter response and the clutter covariance matrix(CCM)to improve the estimation accuracy of the CCM.To prove that the atomic norm theory is applicable in the presence of the array amplitude-phase error,the clutter sparsity is analyzed in this paper.Meanwhile,simulation results demonstrate that the proposed method is superior to the state-of-the-art STAP method.Moreover,the measured data is used to verify the effectiveness of the proposed method.展开更多
As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nucl...As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nuclear norm minimization(WNNM) is proposed. To implement blind de-noising, the accurate estimation of noise variance is very important. So far, it is still a challenge to estimate SAR image noise level accurately because of the rich texture. Principal component analysis(PCA) and the low rank patches selected by image texture strength are used to estimate the noise level. With the help of noise level, WNNM can be expected to SAR image de-noising. Experimental results show that the proposed method outperforms many excellent de-noising algorithms such as Bayes least squares-Gaussian scale mixtures(BLS-GSM) method, non-local means(NLM) filtering in terms of both quantitative measure and visual perception quality.展开更多
For a class of fractional-order linear continuous-time switched systems specified by an arbitrary switching sequence,the performance of PDα-type fractional-order iterative learning control(FOILC)is discussed in the s...For a class of fractional-order linear continuous-time switched systems specified by an arbitrary switching sequence,the performance of PDα-type fractional-order iterative learning control(FOILC)is discussed in the sense of L^p norm.When the systems are disturbed by bounded external noises,robustness of the PDα-type algorithm is firstly analyzed in the iteration domain by taking advantage of the generalized Young inequality of convolution integral.Then,convergence of the algorithm is discussed for the systems without any external noise.The results demonstrate that,under some given conditions,both convergence and robustness can be guaranteed during the entire time interval.Simulations support the correctness of the theory.展开更多
基金Supported by the Key Laboratory Fund for Equipment Pre-Research(6142207210202)。
文摘Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs(the 111 Project)(B18039)。
文摘In this paper,a space-time adaptive processing(STAP)method is proposed for the airborne radar with the array amplitude-phase error considered,which is based on atomic norm minimization(ANM).In the conventional ANM-based STAP method,the influence of the array amplitude-phase error is not considered and restrained,which inevitably causes performance deterioration.To solve this problem,the array amplitude-phase error is firstly estimated.Then,by pre-estimating the array amplitude-phase error information,a modified ANM model is built,in which the array amplitude-phase error factor is separated from the clutter response and the clutter covariance matrix(CCM)to improve the estimation accuracy of the CCM.To prove that the atomic norm theory is applicable in the presence of the array amplitude-phase error,the clutter sparsity is analyzed in this paper.Meanwhile,simulation results demonstrate that the proposed method is superior to the state-of-the-art STAP method.Moreover,the measured data is used to verify the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(6140130861572063)+7 种基金the Natural Science Foundation of Hebei Province(F2016201142F2016201187)the Natural Social Foundation of Hebei Province(HB15TQ015)the Science Research Project of Hebei Province(QN2016085ZC2016040)the Science and Technology Support Project of Hebei Province(15210409)the Natural Science Foundation of Hebei University(2014-303)the National Comprehensive Ability Promotion Project of Western and Central China
文摘As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nuclear norm minimization(WNNM) is proposed. To implement blind de-noising, the accurate estimation of noise variance is very important. So far, it is still a challenge to estimate SAR image noise level accurately because of the rich texture. Principal component analysis(PCA) and the low rank patches selected by image texture strength are used to estimate the noise level. With the help of noise level, WNNM can be expected to SAR image de-noising. Experimental results show that the proposed method outperforms many excellent de-noising algorithms such as Bayes least squares-Gaussian scale mixtures(BLS-GSM) method, non-local means(NLM) filtering in terms of both quantitative measure and visual perception quality.
基金supported by the National Natural Science Foundation of China(61201323)the Special Fund Project for Promoting Scientific and Technological Innovation in Xuzhou City(KC18013)the Cultivation Project of Xuzhou Institute of Technology(XKY2017112)
文摘For a class of fractional-order linear continuous-time switched systems specified by an arbitrary switching sequence,the performance of PDα-type fractional-order iterative learning control(FOILC)is discussed in the sense of L^p norm.When the systems are disturbed by bounded external noises,robustness of the PDα-type algorithm is firstly analyzed in the iteration domain by taking advantage of the generalized Young inequality of convolution integral.Then,convergence of the algorithm is discussed for the systems without any external noise.The results demonstrate that,under some given conditions,both convergence and robustness can be guaranteed during the entire time interval.Simulations support the correctness of the theory.