减小非视距(Non Line Of Sight,NLOS)误差定位算法大多要求在移动台和基站之间至少存在一条视距(Line Of Sight,LOS)路径。提出一种新的NLOS环境中基于散射模型分类传播环境的TOA(Time Of Arrival)定位方法,将散射模型中NLOS传播的统计...减小非视距(Non Line Of Sight,NLOS)误差定位算法大多要求在移动台和基站之间至少存在一条视距(Line Of Sight,LOS)路径。提出一种新的NLOS环境中基于散射模型分类传播环境的TOA(Time Of Arrival)定位方法,将散射模型中NLOS传播的统计特性加入到定位算法中,使用散射模型研究了3种定位算法,方差匹配算法,期望最大算法和贝叶斯算法。并对算法进行仿真,仿真结果表明,本算法性能优于传统定位算法。展开更多
在RSSI(Received Signal Strength Indication)测距定位技术中,为抑制巷道信号NLOS(Non Line of Sight)传输对定位结果的影响,提出信号指纹定位和几何优化算法。在离线阶段利用高斯滤波最大值加权法和最小二乘法建立符合矿井巷道环境的...在RSSI(Received Signal Strength Indication)测距定位技术中,为抑制巷道信号NLOS(Non Line of Sight)传输对定位结果的影响,提出信号指纹定位和几何优化算法。在离线阶段利用高斯滤波最大值加权法和最小二乘法建立符合矿井巷道环境的无线信号测距模型,设计改进卡尔曼滤波器平滑处理离线信号值,抑制巷道信号NLOS传输带来的影响,建立离线信号指纹库;在线定位阶段,利用加权K最近邻法(WKNN)将定位目标接收到的信号值与指纹库中的信号值进行匹配,将匹配到的最优信号值参与测距定位计算,最后通过几何优化算法将定位结果归一化处理,使其符合一维定位分布。结果表明:所提算法的平均定位误差为0.9 m,相比于高斯滤波最大值加权法、经典卡尔曼滤波指纹定位算法和改进卡尔曼滤波指纹定位方法,其平均误差分别减小2.36,1.17,0.35 m。所提算法能够有效抑制巷道信号NLOS传输对RSSI测距定位的影响,可实现RSSI方法在矿井NLOS环境中的有效应用。展开更多
文摘减小非视距(Non Line Of Sight,NLOS)误差定位算法大多要求在移动台和基站之间至少存在一条视距(Line Of Sight,LOS)路径。提出一种新的NLOS环境中基于散射模型分类传播环境的TOA(Time Of Arrival)定位方法,将散射模型中NLOS传播的统计特性加入到定位算法中,使用散射模型研究了3种定位算法,方差匹配算法,期望最大算法和贝叶斯算法。并对算法进行仿真,仿真结果表明,本算法性能优于传统定位算法。
文摘在RSSI(Received Signal Strength Indication)测距定位技术中,为抑制巷道信号NLOS(Non Line of Sight)传输对定位结果的影响,提出信号指纹定位和几何优化算法。在离线阶段利用高斯滤波最大值加权法和最小二乘法建立符合矿井巷道环境的无线信号测距模型,设计改进卡尔曼滤波器平滑处理离线信号值,抑制巷道信号NLOS传输带来的影响,建立离线信号指纹库;在线定位阶段,利用加权K最近邻法(WKNN)将定位目标接收到的信号值与指纹库中的信号值进行匹配,将匹配到的最优信号值参与测距定位计算,最后通过几何优化算法将定位结果归一化处理,使其符合一维定位分布。结果表明:所提算法的平均定位误差为0.9 m,相比于高斯滤波最大值加权法、经典卡尔曼滤波指纹定位算法和改进卡尔曼滤波指纹定位方法,其平均误差分别减小2.36,1.17,0.35 m。所提算法能够有效抑制巷道信号NLOS传输对RSSI测距定位的影响,可实现RSSI方法在矿井NLOS环境中的有效应用。