Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute...Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute the northwestern margin fault belt of the Qinghai\|Tibetan plateau. In order to investigate the deep crust structure in the Altun region, layers which Tarim lithosphere subducted beneath the Qinghai\|Tibetan plateau, the forward structure of the subduction plate and the scale of the plate subduction, a deep seismic reflection profile was designed. Data collection work of the deep seismic reflection profile across Altun fault was completed during 24/8/1999 to 25/9/1999. The profile locates in Qiemo county, Xinjiang Uygur Autonomous Region, the southern end of the profile stretches into Altun Mountains, the northern end locates in the Tarim desert margin. The profile is nearly SN trending and crosses the main Altun fault. The profile totally is 145km long, time record is 30 seconds, the smallest explosive amount is 72~100kg, the biggest explosive amount reaches 200~300kg, the explosive distance is 800m, and detectors are laid at a 50m distance.展开更多
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ...The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise).展开更多
To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Differen...To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Different from the traditional fault diagnosis optimization algorithms,the fault intelligent learning method pro-posed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong cou-pling nonlinearity.By constructing a two-layer learning network,the method enables efficient joint diagnosis of fault areas and fault parameters.The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s,and the fault diagnosis efficiency is improved by 99.8%compared with the traditional algorithm.展开更多
钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井...钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井顶部驱动装置故障诊断方法,利用以Transformer为基础的双向编码器模型(Bidirectional Encoder Representations from Transformers,BERT)构建了混合神经网络模型BERT-BiLSTM-CRF与BERT-BiLSTM-Attention,分别实现了顶驱故障文本数据的命名实体识别和关系抽取,并通过相似度计算,实现了故障知识的有效融合和智能问答,最终构建了顶部驱动装置故障诊断方法。研究结果表明:①在故障实体识别任务上,BERT-BiLSTM-CRF模型的精确度达到95.49%,能够有效识别故障文本中的信息实体;②在故障关系抽取上,BERT-BiLSTM-Attention模型的精确度达到93.61%,实现了知识图谱关系边的正确建立;③开发的问答系统实现了知识图谱的智能应用,其在多个不同类型问题上的回答准确率超过了90%,能够满足现场使用需求。结论认为,基于知识图谱的故障诊断方法能够有效利用顶部驱动装置的先验知识,实现故障的快速定位与智能诊断,具备良好的应用前景。展开更多
文摘Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute the northwestern margin fault belt of the Qinghai\|Tibetan plateau. In order to investigate the deep crust structure in the Altun region, layers which Tarim lithosphere subducted beneath the Qinghai\|Tibetan plateau, the forward structure of the subduction plate and the scale of the plate subduction, a deep seismic reflection profile was designed. Data collection work of the deep seismic reflection profile across Altun fault was completed during 24/8/1999 to 25/9/1999. The profile locates in Qiemo county, Xinjiang Uygur Autonomous Region, the southern end of the profile stretches into Altun Mountains, the northern end locates in the Tarim desert margin. The profile is nearly SN trending and crosses the main Altun fault. The profile totally is 145km long, time record is 30 seconds, the smallest explosive amount is 72~100kg, the biggest explosive amount reaches 200~300kg, the explosive distance is 800m, and detectors are laid at a 50m distance.
基金supported by the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20210347)。
文摘The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise).
基金This work was supported by the National Key Research and Development Program Topics(2020YFC2200902)the National Natural Science Foundation of China(11872110).
文摘To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Different from the traditional fault diagnosis optimization algorithms,the fault intelligent learning method pro-posed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong cou-pling nonlinearity.By constructing a two-layer learning network,the method enables efficient joint diagnosis of fault areas and fault parameters.The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s,and the fault diagnosis efficiency is improved by 99.8%compared with the traditional algorithm.
文摘钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井顶部驱动装置故障诊断方法,利用以Transformer为基础的双向编码器模型(Bidirectional Encoder Representations from Transformers,BERT)构建了混合神经网络模型BERT-BiLSTM-CRF与BERT-BiLSTM-Attention,分别实现了顶驱故障文本数据的命名实体识别和关系抽取,并通过相似度计算,实现了故障知识的有效融合和智能问答,最终构建了顶部驱动装置故障诊断方法。研究结果表明:①在故障实体识别任务上,BERT-BiLSTM-CRF模型的精确度达到95.49%,能够有效识别故障文本中的信息实体;②在故障关系抽取上,BERT-BiLSTM-Attention模型的精确度达到93.61%,实现了知识图谱关系边的正确建立;③开发的问答系统实现了知识图谱的智能应用,其在多个不同类型问题上的回答准确率超过了90%,能够满足现场使用需求。结论认为,基于知识图谱的故障诊断方法能够有效利用顶部驱动装置的先验知识,实现故障的快速定位与智能诊断,具备良好的应用前景。