期刊文献+
共找到1,877篇文章
< 1 2 94 >
每页显示 20 50 100
基于多元线性回归和反向传播人工神经网络预测离子液体的声速
1
作者 季常征 万仁 +2 位作者 时兆翀 彭昌军 刘洪来 《华东理工大学学报(自然科学版)》 北大核心 2025年第2期158-165,共8页
离子液体的声速可采用实验测定、半经验模型和理论研究方法获得,其中,定量结构-性质关系(QSPR)模型已受到广泛关注,但构造一个有效的QSPR模型取决于选择合适的分子描述符。本文采用片段活度系数类导体屏蔽模型(COSMO-SAC)获得离子液体... 离子液体的声速可采用实验测定、半经验模型和理论研究方法获得,其中,定量结构-性质关系(QSPR)模型已受到广泛关注,但构造一个有效的QSPR模型取决于选择合适的分子描述符。本文采用片段活度系数类导体屏蔽模型(COSMO-SAC)获得离子液体电荷密度分布片段面积(Sσ)和空穴体积(VCOSMO)两个描述符,并分别采用多元线性回归(MLR)和反向传播人工神经网络(BP-ANN)构建了用于描述离子液体声速的线性QSPR模型u-MLR和非线性QSPR模型u-ANN,模型中包含了温度和离子液体相对分子量,所涉及的数据集包括171种离子液体的5 114个数据点。在总的离子液体声速数据集中,u-MLR和u-ANN的决定系数(R2)分别为0.970 6和0.999 5,平均绝对相对偏差(AARD)分别为1.59%和0.10%,均方根误差(RMSE)分别为30.68 m/s和4.12 m/s。结果表明,基于人工神经网络建立的u-ANN模型的预测效果明显优于基于线性回归方法建立的u-MLR模型的预测效果。 展开更多
关键词 声速 离子液体 人工神经网络 多元线性回归 定量结构-性质关系
在线阅读 下载PDF
基于晶体图卷积神经网络的晶格能回归模型
2
作者 郑欣雨 任泽华 +2 位作者 周利 柴士阳 吉旭 《化工学报》 北大核心 2025年第3期1084-1092,F0004,共10页
晶格能是决定晶体热力学稳定性的关键物理性质,对药物多晶型稳定性的筛选具有指导意义。晶格能的获取方式通常为实验试错和基于分子/量子力学的理论计算,对于数量庞大的晶型结构,两种方法均费时费力。提出一种基于密度泛函理论(density ... 晶格能是决定晶体热力学稳定性的关键物理性质,对药物多晶型稳定性的筛选具有指导意义。晶格能的获取方式通常为实验试错和基于分子/量子力学的理论计算,对于数量庞大的晶型结构,两种方法均费时费力。提出一种基于密度泛函理论(density functional theory,DFT)和晶体图卷积神经网络(crystal graph convolutional neural networks,CGCNN)的晶格能回归模型。首先采用自洽屏蔽多体色散校正的DFT方法计算晶格能,建立包含酸、醇、酰胺、氨基酸、酸酐等248种晶型的晶格能数据集;基于所建立的数据集,采用CGCNN进一步建立晶型和晶格能之间的定量回归模型,该模型训练集和测试集的MAPE分别为1.24%和5.04%,R2分别为0.9978和0.9750,表明该模型具有较好的预测效果,可以为高通量筛选稳定的晶型提供理论指导。 展开更多
关键词 晶格能 多晶型 密度泛函理论 神经网络 回归模型
在线阅读 下载PDF
基于广义回归神经网络的钻柱涡动识别
3
作者 朱海峰 何英明 +3 位作者 李亚峰 王名春 项明 薛启龙 《西安石油大学学报(自然科学版)》 北大核心 2025年第4期80-89,97,共11页
为及时识别井下钻具涡动,降低钻井风险,利用时频分析技术标记了实际钻井信号中典型的涡动信号,分析了钻具涡动时正交三轴加速度计信号之间的关系,将加速度信号间相关系数作为涡动识别特征,建立了基于广义回归神经网络(General Regressio... 为及时识别井下钻具涡动,降低钻井风险,利用时频分析技术标记了实际钻井信号中典型的涡动信号,分析了钻具涡动时正交三轴加速度计信号之间的关系,将加速度信号间相关系数作为涡动识别特征,建立了基于广义回归神经网络(General Regression Neural Network,GRNN)的井下钻柱涡动识别模型。研究结果表明,所建涡动识别模型的综合识别精度为91.8%,可以在大量振动数据中快速准确识别出涡动信号。研究结果可为建立井下振动识别系统提供技术方法。 展开更多
关键词 振动信号 钻柱涡动 模式识别 广义回归神经网络
在线阅读 下载PDF
基于NARX神经网络的飞机货舱模拟烟雾近似模型
4
作者 杨建忠 李子建 陈希远 《计算机应用与软件》 北大核心 2025年第8期139-146,共8页
为解决飞机货舱模拟烟雾流场扩散规律研究中CFD(Computational Fluid Dynamics)仿真手段对研究资源的过度依赖和耗费过多的问题。提出一种新的NARX神经网络模型对CFD模型,将时间因素和流场边界条件当作影响条件对烟雾流场的扩散规律作... 为解决飞机货舱模拟烟雾流场扩散规律研究中CFD(Computational Fluid Dynamics)仿真手段对研究资源的过度依赖和耗费过多的问题。提出一种新的NARX神经网络模型对CFD模型,将时间因素和流场边界条件当作影响条件对烟雾流场的扩散规律作出预测。以CFD模型中某点的烟雾浓度和流场的边界条件作为神经网络模型的输入对其进行训练,得到神经网络代理模型。模型训练和测试结果表明,该模型可以有效代替CFD模型进行相关研究,且近似计算效果好,仿真时间大大减少。 展开更多
关键词 模拟烟雾 代理模型 CFD模型 narx神经网络
在线阅读 下载PDF
融合卷积神经网络与线性回归的带式输送机托辊故障音频识别方法
5
作者 陈湘源 秦伟 +1 位作者 刘晏驰 罗明华 《煤炭科学技术》 北大核心 2025年第S1期389-398,共10页
针对煤矿井下带式输送机托辊故障音频识别中存在的声源复杂、特征不显著等问题,提出一种融合卷积神经网络与线性回归的托辊故障音频识别方法。首先通过带式输送机巡检机器人搭载的MEMS拾音器采集托辊沿线音频信号,基于小波自相关去噪技... 针对煤矿井下带式输送机托辊故障音频识别中存在的声源复杂、特征不显著等问题,提出一种融合卷积神经网络与线性回归的托辊故障音频识别方法。首先通过带式输送机巡检机器人搭载的MEMS拾音器采集托辊沿线音频信号,基于小波自相关去噪技术对声音进行预处理,抑制音频信号中的背景噪声信号,优化数据质量。其次利用声纹谱分离技术,采用HPSS(谐波冲击波源分离)方法分离出谐波、冲击波分量,增强托辊故障声音信号特征;基于MFCC(梅尔频率倒谱系数)声纹特征提取方法,解析出谐波-冲击波中托辊声纹特征信息,生成声谱图,提升托辊故障声纹表征能力。最后以声谱图与声品质特征为数据源,融合故障多模态特征,丰富数据维度,基于残差卷积神经网络结构计算图像特征,多元线性回归快速拟合音频基本特征,生成融合卷积神经网络与线性回归的托辊故障音频识别模型进行联合训练,通过Focal Loss损失函数优化模型训练的样本权重,提高模型对托辊故障识别的准确率。用该方法对国能榆林郭家湾煤矿实际采集的带式输送机故障托辊音频信息进行分析验证,结果表明:托辊故障检出率达到95.79%,检出准确率达到95.60%。 展开更多
关键词 托辊故障 音频识别 声纹特征 声谱图 残差卷积神经网络 多元线性回归
在线阅读 下载PDF
基于广义回归神经网络的光纤光栅传感器解调技术研究
6
作者 夏翔 李贤良 +3 位作者 潘华 闫东 张晓锋 张云辉 《电测与仪表》 北大核心 2025年第2期62-68,共7页
针对现有光纤光栅传感器波长峰值检测方法存在的误差大、稳定性差等问题,提出了一种基于广义回归神经网络和改进粒子群优化算法的光纤光栅传感器波长峰值检测方法。通过改进的粒子群优化算法对广义回归神经网络的平滑因子进行寻优,提高... 针对现有光纤光栅传感器波长峰值检测方法存在的误差大、稳定性差等问题,提出了一种基于广义回归神经网络和改进粒子群优化算法的光纤光栅传感器波长峰值检测方法。通过改进的粒子群优化算法对广义回归神经网络的平滑因子进行寻优,提高广义回归神经网络中心波长计算的准确性。通过试验分析所提方法在不同中心波长下的性能。结果表明,所提方法比传统方法更稳定,解调误差更小,整体中心波长绝对偏差降低了35.90%和24.24%,相对波长变化偏差降低了20.00%和13.04%。 展开更多
关键词 光纤光栅 峰值检测 中心波长 粒子群优化算法 广义回归神经网络
在线阅读 下载PDF
基于线性回归分析与BP神经网络的枣树需水量研究
7
作者 方婷 《南方农机》 2025年第5期44-46,50,共4页
【目的】需水量的预测是实现智能灌溉的关键环节,将先进的计算机技术应用到需水量的预测中具有重要现实意义。【方法】根据气象资料数据以及枣树逐日参考需水量,以空气温度、平均风速、空气湿度、日照时数为输入向量,采用线性回归分析... 【目的】需水量的预测是实现智能灌溉的关键环节,将先进的计算机技术应用到需水量的预测中具有重要现实意义。【方法】根据气象资料数据以及枣树逐日参考需水量,以空气温度、平均风速、空气湿度、日照时数为输入向量,采用线性回归分析和BP神经网络模型对枣树需水量进行了相关预测研究,并从365组实验数据中随机选取40组样本数据进行了枣树需水量预测对比。【结果】1)整体线性回归分析要优于逐步线性回归分析,且空气温度、平均风速、空气湿度对枣树需水量的影响要高于日照时数;2)BP神经网络的预测值与实际值的线性拟合值为0.983,高于线性回归方程的0.941;3)BP神经网络的残差相对较小且波动幅度小,而线性回归方程的残差较大且不稳定;BP神经网络相对于线性回归分析对需水量的预测效果更好,更适用于枣树需水量的预测研究;而线性回归分析可以分析出气象因素对需水量的影响程度,能够为模型输入向量的选择提供依据。【结论】本研究为后续枣树需水量预测研究奠定了一定的基础,未来的研究工作中可以选取更多的影响因素来进行试验,进一步提高预测效果,助力实现枣树智能节水灌溉。 展开更多
关键词 线性回归分析 BP神经网络 枣树需水量预测 线性拟合
在线阅读 下载PDF
基于神经网络模型的县域尺度农业碳排放研究
8
作者 张合兵 潘怡莎 +2 位作者 聂小军 王重洋 张慧芳 《河南理工大学学报(自然科学版)》 北大核心 2025年第5期111-120,共10页
目的为测算平顶山市各县区2010—2020年农业碳排放,开展基于神经网络模型的县域尺度农业碳排放研究。方法从县域角度出发,从投入与产出角度对各影响因子进行分析,并在此基础上建立农业碳排放预测模型。采用灰色关联分析和Robust回归分析... 目的为测算平顶山市各县区2010—2020年农业碳排放,开展基于神经网络模型的县域尺度农业碳排放研究。方法从县域角度出发,从投入与产出角度对各影响因子进行分析,并在此基础上建立农业碳排放预测模型。采用灰色关联分析和Robust回归分析,得出各影响因素的关联程度及对农业碳排放的影响,初步确定各影响因素权重,建立神经网络预测模型,并将预测结果与实际值进行检验评价。结果结果表明:(1)平顶山市受农业生产分布区域影响,环中心城区县市承担主要农业生产活动,农业碳排放量较高;(2)灰色关联分析结果显示,农资投入要素对平顶山农业碳排放量影响显著,其中化肥与碳排放量相关度最高,产出因素相关度存在一定差异;(3)Robust回归分析结果给出了各影响因素的影响方向,指出玉米种植对农业碳排放的产生呈负相关关系,油料,瓜果,农业劳动力与农业碳排放关系不明显;(4)预测模型结果与实际值相关系数R2为0.99,拟合度较好。结论研究结果可为区域农业高质量发展和农业碳减排政策的制定提供一定理论支持与技术支撑。 展开更多
关键词 农业碳排放 灰色关联 神经网络 Robust回归分析 农业碳排放影响因素
在线阅读 下载PDF
基于异构图神经网络的网络切片端到端时延估计
9
作者 胡海峰 朱漪雯 赵海涛 《计算机科学》 北大核心 2025年第3期349-358,共10页
端到端时延作为网络切片重要的性能指标,在切片部署中因受到网络拓扑、流量模型和调度策略等影响,很难通过建模方式进行准确预测。为了解决上述问题,提出基于异构图神经网络的网络切片时延预测(Heterogeneous Graph Neural Network-Base... 端到端时延作为网络切片重要的性能指标,在切片部署中因受到网络拓扑、流量模型和调度策略等影响,很难通过建模方式进行准确预测。为了解决上述问题,提出基于异构图神经网络的网络切片时延预测(Heterogeneous Graph Neural Network-Based Network Slicing Latency Prediction,HGNN)算法。首先,构建了切片-队列-链路的分层异构图,实现了切片的分层特征表达。然后,针对分层图中切片、队列和链路3种类型节点的属性特点,使用异构图神经网络挖掘拓扑动态变化、边特征信息和长依赖关系等和切片相关的底层特征,即分别选用GraphSAGE图神经网络、EGRET图神经网络和门控循环单元GRU来提取切片、队列和链路特征。同时,利用基于异构图神经网络的深度回归实现了网络切片特征表达的更新迭代和切片时延的准确预测。最后,通过构建基于OMNeT++的不同拓扑结构、流量模型和调度策略的切片数据库,验证了HGNN在实际网络场景下对切片端到端时延预测的有效性,并通过对比多种基于图深度学习的切片时延预测算法,进一步验证了HGNN在时延预测准确度和泛化性方面的优越性。 展开更多
关键词 网络切片 异构图神经网络 时延预测 深度回归
在线阅读 下载PDF
基于分类-回归卷积神经网络的新能源电力系统可靠性评估方法 被引量:3
10
作者 邵成成 任孟极 +2 位作者 徐天元 钱涛 王锡凡 《中国电机工程学报》 EI CSCD 北大核心 2024年第23期9134-9144,I0002,共12页
Monte Carlo模拟(Monte Carlo simulation,MCS)在复杂电力系统可靠性评估中广泛应用,但计算效率较低。针对此,该文提出一种基于卷积神经网络(conventional neural network,CNN)的可靠性评估方法,在时序MCS框架下采用CNN加速系统状态评... Monte Carlo模拟(Monte Carlo simulation,MCS)在复杂电力系统可靠性评估中广泛应用,但计算效率较低。针对此,该文提出一种基于卷积神经网络(conventional neural network,CNN)的可靠性评估方法,在时序MCS框架下采用CNN加速系统状态评估计算。首先,构造反映系统运行状态的特征向量,建立基于CNN的系统失负荷量回归模型;其次,针对可靠性评估样本不均衡、回归训练效率低的问题,进一步建立系统状态分类器,形成基于CNN的分类-回归模型;此外,针对CNN训练样本和实际评估样本不一致的问题,提出分类结果矫正机制,进一步提升模型的实用性;最后,通过改编IEEE-RTS系统的计算分析验证了所提方法的有效性和优越性。 展开更多
关键词 卷积神经网络 可靠性评估 分类-回归 数据驱动
在线阅读 下载PDF
基于NARX神经网络系统辨识的振动台迭代学习控制研究 被引量:1
11
作者 郭迎庆 朱文 +3 位作者 刘少帅 李世东 景兴建 徐赵东 《现代制造工程》 CSCD 北大核心 2024年第12期37-47,共11页
针对传统振动台台面控制效果不佳的问题,提出了一种自适应迭代学习控制算法,该算法在原有的位移三参量控制系统基础上构建外部位移闭环,形成双闭环控制系统。同时为更准确地模拟振动台的动态行为,引入灰狼优化(GWO)算法优化非线性有源... 针对传统振动台台面控制效果不佳的问题,提出了一种自适应迭代学习控制算法,该算法在原有的位移三参量控制系统基础上构建外部位移闭环,形成双闭环控制系统。同时为更准确地模拟振动台的动态行为,引入灰狼优化(GWO)算法优化非线性有源自回归(NARX)神经网络对振动台模型辨识。仿真结果表明,利用GWO-NARX神经网络进行振动台模型辨识,取得了较高的辨识效果,精度可达99.8%。在辨识模型的基础上,利用自适应迭代学习控制算法极大地提高了振动台的控制精度,最大误差较原系统下降了49.6%。与传统的NARX神经网络进行振动台模型辨识相比,GWO-NARX神经网络辨识效果更好,模型更贴近真实系统;与传统的三参量控制系统相比,自适应迭代学习控制算法提高了振动台波形复现精度,并且能够更好地适应系统的复杂性,为实际工程应用提供了可靠的技术支持和解决方案。 展开更多
关键词 电动式振动台 自适应迭代学习 narx神经网络 系统辨识
在线阅读 下载PDF
基于GM(1,1)与BP神经网络模型的西安市地下水位动态特征及趋势预测研究
12
作者 李培月 梁豪 +2 位作者 杨俊岩 田艳 寇晓梅 《西北地质》 北大核心 2025年第3期236-245,共10页
地下水是干旱与半干旱地区极其珍贵的自然资源,地下水动态的精准预测与评估关乎着地下水资源的有效保护与合理利用。本研究根据西安市2010~2020年地下水位监测数据,系统分析了西安市地下水位年际、年内动态变化特征,探究了影响地下水位... 地下水是干旱与半干旱地区极其珍贵的自然资源,地下水动态的精准预测与评估关乎着地下水资源的有效保护与合理利用。本研究根据西安市2010~2020年地下水位监测数据,系统分析了西安市地下水位年际、年内动态变化特征,探究了影响地下水位动态的主要因素,通过SPSS对影响地下水位动态的降水量和开采量两个主要因素进行相关性分析,并基于GM(1,1)灰度预测模型和BP神经网络模型对地下水位变动趋势进行了预测。结果表明:(1)2010~2016年,地下水位整体上呈下降趋势,2016~2020年间,得益于地下水压采和供水设施的不断优化完善,地下水位呈回升趋势。(2)降水和人为开采均对西安市地下水位变动具有显著影响;地下水位埋深是决定受降水影响程度的关键因素,其中河漫滩地区最为敏感,阶地次之,黄土塬区较弱。地下水开采量与地下水位埋深具有更强的相关性。这凸显了其在调控地下水位动态变化中的主导地位。(3)地下水位预测结果显示,随着地下水开采量呈现出逐年下降的趋势,研究区地下水整体处于波动上升趋势。本研究对西安市地下水动态的影响因素及预测趋势进行了研究,对地下水资源管理和可持续发展具有重要参考价值。 展开更多
关键词 地下水位动态 主导因素 回归分析 灰色模型 BP神经网络预测
在线阅读 下载PDF
预测输尿管软镜碎石术后并发尿源性脓毒症的反向传播神经网络模型构建
13
作者 陈文炜 何彦丰 +5 位作者 卢凯鑫 刘昌毅 江涛 张华 高锐 薛学义 《浙江大学学报(医学版)》 北大核心 2025年第1期99-107,I0032-I0034,共12页
目的:构建输尿管软镜碎石术(FURL)后并发尿源性脓毒症的反向传播神经网络预测模型。方法:纳入428例接受FURL的肾结石患者,根据术后是否并发尿源性脓毒症分为脓毒症组(42例)和对照组(386例)。采用logistic回归分析确定FURL后并发尿源性... 目的:构建输尿管软镜碎石术(FURL)后并发尿源性脓毒症的反向传播神经网络预测模型。方法:纳入428例接受FURL的肾结石患者,根据术后是否并发尿源性脓毒症分为脓毒症组(42例)和对照组(386例)。采用logistic回归分析确定FURL后并发尿源性脓毒症的影响因素及其交互作用。同时建立logistic回归模型和神经网络模型进行预测,通过受试者工作特征曲线评估两种模型的预测效能。结果:单因素分析显示,结石手术史、性别、尿培养阳性、结石直径、糖尿病、手术时间、白细胞、血小板、C反应蛋白(CRP)及肝素结合蛋白(HBP)水平与FURL后并发尿源性脓毒症显著相关(均P<0.05)。多因素分析表明,尿培养阳性、CRP及HBP水平是FURL后并发尿源性脓毒症的独立危险因素(均P<0.05)。交互作用分析显示,CRP与HBP对FURL后并发尿源性脓毒症的影响在相加模型(RERI=8.453,95%CI:2.645~16.282;AP=0.696,95%CI:0.131~1.273;S=3.369,95%CI:1.176~7.632)和相乘模型(OR=1.754,95%CI:1.218~3.650)中存在交互作用;CRP与尿培养对FURL后并发尿源性脓毒症的影响在相乘模型(OR=2.449,95%CI:1.525~3.825)中存在交互作用。预测模型比较显示,反向传播神经网络模型较logistic回归模型具有更优的预测效能。结论:CRP和HBP水平是FURL后并发尿源性脓毒症的独立危险因素,基于CRP、HBP等因素构建的反向传播神经网络模型较logistic回归模型具有更高的预测准确性。 展开更多
关键词 肝素结合蛋白 C反应蛋白 输尿管软镜碎石术 尿源性脓毒症 预测 LOGISTIC回归模型 反向传播神经网络模型
在线阅读 下载PDF
基于Elman神经网络的茶叶主产省农业产值与茶商品价格模拟
14
作者 程陈 罗屹 +3 位作者 郑生宏 王嘉仪 张含雨 丁枫华 《中国农机化学报》 北大核心 2025年第2期264-270,共7页
精准预测农业产值和农产品价格对高效利用发展农业资源、调整农业结构和加强农业信息化建设等起推动作用。基于茶叶主产省农业产值及关键影响因素数据和3种电商平台的茶商品交易数据,利用经典的逐步回归方法确定农业产值和茶商品价格的... 精准预测农业产值和农产品价格对高效利用发展农业资源、调整农业结构和加强农业信息化建设等起推动作用。基于茶叶主产省农业产值及关键影响因素数据和3种电商平台的茶商品交易数据,利用经典的逐步回归方法确定农业产值和茶商品价格的关键影响因素及权重,构建基于Elman神经网络算法的农业产值和茶商品价格模拟模型。结果表明,茶叶主产省农业产值的关键影响因素包括活动积温、降水量、粮食作物播种面积、经济作物播种面积、经济作物产量占比、农业机械总动力、机耕面积、机播面积、机收面积、农村用电量、化肥施用量(折纯量)、乡村人口数和乡村从业人员数;茶叶主产省茶商品价格的关键影响因素包括平台、省份、茶类、采摘季节、商品级别和增值服务。基于Elman神经网络算法的茶叶主产省农业产值模型模拟值与实测值的均方根误差为6.21~27.51亿元,归一化均方根误差为3.10%~12.23%;基于Elman神经网络算法的3种电商平台茶商品价格模型模拟值与实测值的均方根误差为81.94~98.26元/kg,归一化均方根误差为8.42%~35.66%。 展开更多
关键词 茶叶 ELMAN神经网络 逐步回归 农业产值 茶商品价格 模拟模型
在线阅读 下载PDF
基于自回归小波神经网络的机械臂自适应滑模控制 被引量:1
15
作者 杨佳 吴佩林 +2 位作者 杨理 寇东山 余斌 《空间控制技术与应用》 CSCD 北大核心 2024年第3期68-76,共9页
针对机械臂存在模型不确定和未知扰动的问题,提出一种动力学模型参数分块逼近的神经网络非奇异终端滑模(nonsingular terminal sliding mode, NTSM)控制方法.为加快系统跟踪误差的收敛速度,避免传统终端滑模存在的奇异性问题,采用一种... 针对机械臂存在模型不确定和未知扰动的问题,提出一种动力学模型参数分块逼近的神经网络非奇异终端滑模(nonsingular terminal sliding mode, NTSM)控制方法.为加快系统跟踪误差的收敛速度,避免传统终端滑模存在的奇异性问题,采用一种非奇异终端滑模面.利用多组自回归小波神经网络(self-recurrent wavelet neural network, SRWNN)分块逼近系统未知的动力学模型参数,并采用自适应更新律调整权重.通过积分控制项补偿SRWNN的逼近误差,并使用Lyapunov稳定性理论证明了系统稳定性.使用MATLAB进行仿真分析,分块SRWNN滑模控制与滑模控制、整体SRWNN滑模控制相比,关节角度跟踪误差的平均稳态误差分别降低了31.9%、76.5%,表明此方法是一种可靠、有效的轨迹跟踪控制方法. 展开更多
关键词 回归小波神经网络 非奇异终端滑模 动力学模型 轨迹跟踪
在线阅读 下载PDF
综合半参数变系数和GRNN神经网络的对流层延迟模型
16
作者 潘雄 张思莹 +3 位作者 李涛 黄伟凯 金丽宏 张红星 《地球物理学报》 北大核心 2025年第1期54-65,共12页
对流层延迟是卫星导航定位的主要误差源之一,精准地预测对流层延迟对于提高全球导航卫星系统的定位精度至关重要.本文将半参数变系数模型(Semiparametric Varying Coefficient,Semi-VC)引入到对流层延迟建模中,构建一种综合半参数变系... 对流层延迟是卫星导航定位的主要误差源之一,精准地预测对流层延迟对于提高全球导航卫星系统的定位精度至关重要.本文将半参数变系数模型(Semiparametric Varying Coefficient,Semi-VC)引入到对流层延迟建模中,构建一种综合半参数变系数与神经网络的新型经验对流层模型.首先,将频谱分析提取的主周期信号作为参数分量,将剩余周期信号和其他误差归入到非参数分量,建立半参数对流层天顶延迟模型(Semiparametric tropospheric zenith delay model,Semi);其次,为了减弱核函数和窗宽参数选择对估计值精度的影响,利用泰勒展式将参数分量展开到一次项,将窗宽参数与参数解算综合考虑,扩充为半参数变系数模型,综合核估计和最小二乘法,利用三步估计方法得到了参数分量和非参数分量的估计值及观测值的拟合残差;然后,引入广义回归神经网络模型(Generalized Regression Neural Network,GRNN)对拟合残差进行补偿建模,利用贝叶斯优化算法(Bayesian Optimization Algorithm,BOA)进行超参数选择,进一步提升混合模型对ZTD(Zenith Tropospheric Delay)的估计精度.最后,利用陆态网络2020至2022年的210个GNSS(Global Navigation Satellite System)测站的实测数据,对本文提出的半参数变系数与广义回归神经网络组合模型(Semiparametric Varying Coefficient-GRNN,Semi-VC-GRNN)与常用模型从系统误差分离和时空分布特性方面进行了对比分析.结果表明,Semi-VC-GRNN模型在2022年210个测站的测试中平均RMSE(Root Mean Square Error)和平均Bias分别为16.8 mm和0.4 mm,平均RMSE相较于5°分辨率和1°分辨率下的GPT3模型分别提升51.25%和50.07%. 展开更多
关键词 天顶对流层延迟 半参数变系数模型 广义回归神经网络模型 陆态网络
在线阅读 下载PDF
融合数据去噪及神经网络算法的目标威胁判别方法
17
作者 李玉玺 方子穆 +2 位作者 李正宇 宋振华 葛尧 《火力与指挥控制》 北大核心 2025年第3期178-185,共8页
目标威胁评判作为战场智能感知的重要组成部分,在作战决策中具有重要作用。为了能够高效准确地预测敌方目标的威胁程度,将目标威胁判别转化为深度学习中的连续变量输出问题。选取敌方目标相对距离、相对速度、可打击角度、火力分配强度... 目标威胁评判作为战场智能感知的重要组成部分,在作战决策中具有重要作用。为了能够高效准确地预测敌方目标的威胁程度,将目标威胁判别转化为深度学习中的连续变量输出问题。选取敌方目标相对距离、相对速度、可打击角度、火力分配强度、目标类型和战术意图6组特征作为原始数据集,采用T-SNE数据可视化算法进行数据预处理和数据去噪;分别基于线性回归和神经网络算法构建威胁判别模型,引入正则化和Dropout策略进行神经网络模型优化;设计具体算例,使用3种方法进行威胁判别,结果表明提出的优化神经网络模型效果最优。 展开更多
关键词 威胁判别 神经网络 T-SNE 线性回归 数据去噪
在线阅读 下载PDF
基于RBF神经网络的PM_(2.5)浓度预测
18
作者 万梓康 谢劭峰 +3 位作者 林买金 孟春阳 彭祥天 张茗斐 《环境监测管理与技术》 北大核心 2025年第4期67-72,共6页
针对传统RBF神经网络在PM_(2.5)回归预测中参数优化的问题,提出了粒子群算法优化的径向基神经网络(PSO-RBF)、鲸鱼算法优化的径向基神经网络(WOA-RBF)、北方苍鹰算法优化的径向基神经网络(NGO-RBF)和灰狼算法优化的径向基神经网络(GWO-R... 针对传统RBF神经网络在PM_(2.5)回归预测中参数优化的问题,提出了粒子群算法优化的径向基神经网络(PSO-RBF)、鲸鱼算法优化的径向基神经网络(WOA-RBF)、北方苍鹰算法优化的径向基神经网络(NGO-RBF)和灰狼算法优化的径向基神经网络(GWO-RBF)4种模型,以2021年12月1日—2022年8月31日拉萨、成都、北京和上海的大气污染物、气象因素、大气可降水量(PWV)及叶面积指数(LAI)的小时数据作为训练集,分别预测了4个城市在2022年9月、10月、11月共计91 d的PM_(2.5)质量浓度变化。结果表明:PSO-RBF模型的优化性能最为显著,相对于RBF模型,PSO-RBF模型的MAE、MAPE、RMSE、R^(2)均得到显著提升。 展开更多
关键词 PM_(2.5) RBF神经网络 粒子群算法 大气污染物 气象因素 回归预测
在线阅读 下载PDF
基于稳健回归和卷积神经网络的中压窃电类型检测方法 被引量:3
19
作者 陈敏 张逸 +4 位作者 邹阳 辛荣 张良羽 高琛 林华 《电网技术》 EI CSCD 北大核心 2024年第11期4729-4738,I0077-I0080,I0076,共15页
目前传统的窃电检测方法只能识别用户是否存在窃电,而无法针对各类型窃电用户进行快速准确稽查。针对中压用户具有用电量大、用电较为规律的特点,该文提出一种基于稳健回归和卷积神经网络的中压配电线路窃电类型检测方法。首先,考虑到... 目前传统的窃电检测方法只能识别用户是否存在窃电,而无法针对各类型窃电用户进行快速准确稽查。针对中压用户具有用电量大、用电较为规律的特点,该文提出一种基于稳健回归和卷积神经网络的中压配电线路窃电类型检测方法。首先,考虑到受通信延迟中断等因素影响存在非正常数据的情况,采用稳健回归算法减小其影响,提高回归分析精度;其次,将回归所得的各用户修正系数及误差项作为用户窃电特征,输入卷积神经网络模型进行训练,以完成窃电类型识别;最后,通过仿真和实测数据进行该文方法的验证。结果表明,在不同扰动条件下,该文方法能准确识别不同类型窃电行为,能够更好地辅助现场排查,缩小排查范围,提高查实率。 展开更多
关键词 窃电检测 稳健回归 中压配电线路 神经网络 智能电表
在线阅读 下载PDF
一种基于NARX神经网络的振动主动控制方法 被引量:2
20
作者 宋春生 熊学春 +1 位作者 陈泊远 杜刚 《噪声与振动控制》 CSCD 北大核心 2024年第2期1-7,260,共8页
针对主被动混合隔振系统中次级通道的非线性因素和时变特性,设计一种基于有源非线性自回归神经网络(Nonlinear Auto-regressive With Exogenous Inputs Neural Network,NARX-NN)的次级通道系统辨识的方法,并成功应用于振动主动控制系统... 针对主被动混合隔振系统中次级通道的非线性因素和时变特性,设计一种基于有源非线性自回归神经网络(Nonlinear Auto-regressive With Exogenous Inputs Neural Network,NARX-NN)的次级通道系统辨识的方法,并成功应用于振动主动控制系统中。首先,使用NARX神经网络对次级通道进行辨识得到准确的次级通道模型;其次,采用FIR滤波器重构初级通道的输出,从而获得作动器的输出信号,基于重构得到数据对辨识的网络进行在线学习,可以避免由白噪声激励在系统中带来的随机振动对控制效果的影响;最后搭建仿真模型以及实验平台,仿真结果表明,该控制算法可以克服次级通道的时变性导致的次级通道失真问题;实验结果表明,该算法对15、20 Hz的线谱分别取得30.1、40.4 dB的能量衰减效果,能够有效地实现振动主动控制。 展开更多
关键词 振动与波 Fx-LMS前馈控制 narx神经网络 振动主动控制 在线系统辨识
在线阅读 下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部