期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Human iPS Cells Loaded with MnO2-Based Nanoprobes for Photodynamic and Simultaneous Enhanced Immunotherapy Against Cancer 被引量:4
1
作者 Yanlei Liu Jingxing Yang +9 位作者 Bin Liu Wen Cao Jingpu Zhang Yuming Yang Lijun Ma Jesus Martinez de la Fuente Jie Song Jian Ni Chunfu Zhang Daxiang Cui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第10期36-52,共17页
How to trigger strong anti-tumor immune responses has become a focus for tumor therapy.Here,we report the human-induced pluripotent stem cells(iPSs)to deliver MnO2@Ce6 nanoprobes into tumors for simultaneous photodyna... How to trigger strong anti-tumor immune responses has become a focus for tumor therapy.Here,we report the human-induced pluripotent stem cells(iPSs)to deliver MnO2@Ce6 nanoprobes into tumors for simultaneous photodynamic therapy(PDT)and enhanced immunotherapy.Ce6 photosensitizer was attached on manganese dioxide(MnO2)nanoparticles,and resultant MnO2@Ce6 nanoprobes were delivered into mitomycin-treated iPSs to form iPS-MnO2@Ce6 nanoprobes.The iPS-MnO2@Ce6 actively targeted in vivo tumors,the acidic microenvironment triggered interaction between MnO2 and H2O2,released large quantities of oxygen,alleviated hypoxia in tumor.Upon PDT,singlet oxygen formed,broken iPSs released tumor-shared antigens,which evoked an intensive innate and adaptive immune response against the tumor,improving dendritic cells matured,effector T cells,and natural killer cells were activated.Meanwhile,regulatory T cells were reduced,and then the immune response induced by iPS-MnO2@Ce6 was markedly stronger than the immune reaction induced by MnO2@Ce6(P<0.05).The iPS-MnO2@Ce6 markedly inhibited tumor growth and metastasis and reduced mortality in mice models with tumor.Human iPS s loaded with MnO2-based nanoprobes are a promising strategy for simultaneous PDT and enhanced immunotherapy against tumor and own clinical translational prospect. 展开更多
关键词 Human iPS MnO2@Ce6 nanoprobes Photodynamic therapy IMMUNOTHERAPY CANCER
在线阅读 下载PDF
Specific Recognition of Breast Cancer Cells In Vitro Using Near Infrared-Emitting Long-Persistence Luminescent Zn_3Ga_2Ge_2O_(10):Cr^(3+)Nanoprobes 被引量:4
2
作者 Jinlei Li Junpeng Shi +3 位作者 Jiangshan Shen Huizi Man Mingxi Wang Hongwu Zhang 《Nano-Micro Letters》 SCIE EI CAS 2015年第2期138-145,共8页
In this paper, near-infrared emitting long-persistence luminescent Zn3Ga2Ge2O10:Cr3?(ZGG) nanoparticles with diameters of 30–100 nm and bright luminescence were prepared by a sol–gel synthesis method. After the surf... In this paper, near-infrared emitting long-persistence luminescent Zn3Ga2Ge2O10:Cr3?(ZGG) nanoparticles with diameters of 30–100 nm and bright luminescence were prepared by a sol–gel synthesis method. After the surface amination, the nanoparticles were further bioconjugated with breast cancer-specific monoclonal antibody(anti-Ep CAM) to form ZGG-Ep CAM nanoprobes which can specifically target breast cancer cell lines(MCF7) in vitro. The results of in vitro images show that the luminescence signals from the cells treated with ZGG-Ep CAM nanoprobes are stronger than those from cells treated with ZGG-unconjugated antibody, indicating that the prepared ZGG-Ep CAM nanoprobes possessed excellent specific recognition capability. Furthermore, due to their long afterglow properties, the imaging could persist more than 1 h. Therefore, these nanoprobes could not only provide a high specificity detection method for cancer cells but also realize the long-time monitoring. Developed near-infrared emitting long-persistence luminescent nanoprobes will be expected to find new perspectives for cell therapy research and diagnosis applications. 展开更多
关键词 nanoprobes Long afterglow Near-infrared luminescence Target imaging
在线阅读 下载PDF
Controllable Synthesis of Fluorescent Carbon Dots and Their Detection Application as Nanoprobes 被引量:13
3
作者 Zhi Yang Zhaohui Li +6 位作者 Minghan Xu Yujie Ma Jing Zhang Yanjie Su Feng Gao Hao Wei Liying Zhang 《Nano-Micro Letters》 SCIE EI CAS 2013年第4期247-259,共13页
Carbon dots(CDs), as a new member of carbon nanomaterial family, have aroused great interest since their discovery in 2004. Because of their outstanding water solubility, high sensitivity and selectivity to target ana... Carbon dots(CDs), as a new member of carbon nanomaterial family, have aroused great interest since their discovery in 2004. Because of their outstanding water solubility, high sensitivity and selectivity to target analytes, low toxicity, favorable biocompatibility, and excellent photostability, researchers from diverse disciplines have come together to further develop the fundamental properties of CDs. Many methods for the production of CDs have been reported, therein, hydrothermal and solvothermal technology needs simple equipments, and microwave synthesis needs less reaction time, hence these methods become current common synthesis methods, in which many precursors have been applied to produce CDs. Due to their excellent fluorescence, CDs have made impressive strides in sensitivity and selectivity to a diverse array of salt ions,organic/biological molecules and target gases. The development of CDs as nanoprobes is still in its infancy, but continued progress may lead to their integration into environmental and biological applications. Hydrothermal,solvothermal, and microwave synthesis of fluorescent carbon dots and their detection applications as nanoprobes in salt ions, organic/biological molecules, and target gases will be reviewed. 展开更多
关键词 Carbon dots HYDROTHERMAL SOLVOTHERMAL Microwave NANOPROBE
在线阅读 下载PDF
The hard X-ray nanoprobe beamline at the SSRF
4
作者 Yan He Hui Jiang +6 位作者 Dong-Xu Liang Zhi-Sen Jiang Huai-Na Yu Hua Wang Cheng-Wen Mao Jia-Nan Xie Ai-Guo Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第7期79-88,共10页
The hard X-ray nanoprobe beamline BL13U is a phase-Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility.The beamline aims to enable comprehensive experiments at high spatial resolutions ranging from 50 t... The hard X-ray nanoprobe beamline BL13U is a phase-Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility.The beamline aims to enable comprehensive experiments at high spatial resolutions ranging from 50 to 10 nm. The X-ray energy range of the beamline, 5–25 keV, can detect most elements in the periodic table. Two operating modes were designed to accommodate the experimental requirements of high-energy resolution or high photon flux, respectively. X-ray nanofluorescence, nanodiffraction, and coherent diffraction imaging are developed as the main experimental techniques for BL13U. This paper describes the beamline optics, end station configurations, experimental methods under development, and preliminary test results. This comprehensive overview aims to provide a clear understanding of the beamline capabilities and potential applications. 展开更多
关键词 Shanghai synchrotron radiation facility Hard X-ray nanoprobe X-ray nanofocusing
在线阅读 下载PDF
Iron-Imprinted Single-Atomic Site Catalyst-Based Nanoprobe for Detection of Hydrogen Peroxide in Living Cells 被引量:2
5
作者 Zhaoyuan Lyu Shichao Ding +6 位作者 Maoyu Wang Xiaoqing Pan Zhenxing Feng Hangyu Tian Chengzhou Zhu Dan Du Yuehe Lin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第9期364-376,共13页
Fe-based single-atomic site catalysts(SASCs),with the natural metalloproteases-like active site structure,have attracted widespread attention in biocatalysis and biosensing.Precisely,controlling the isolated single-at... Fe-based single-atomic site catalysts(SASCs),with the natural metalloproteases-like active site structure,have attracted widespread attention in biocatalysis and biosensing.Precisely,controlling the isolated single-atom Fe-N-C active site structure is crucial to improve the SASCs’performance.In this work,we use a facile ion-imprinting method(IIM)to synthesize isolated Fe-N-C single-atomic site catalysts(IIM-Fe-SASC).With this method,the ion-imprinting process can precisely control ion at the atomic level and form numerous well-defined single-atomic Fe-N-C sites.The IIM-Fe-SASC shows better peroxidase-like activities than that of non-imprinted references.Due to its excellent properties,IIM-Fe-SASC is an ideal nanoprobe used in the colorimetric biosensing of hydrogen peroxide(H_(2)O_(2)).Using IIM-Fe-SASC as the nanoprobe,in situ detection of H_(2)O_(2)generated from MDA-MB-231 cells has been successfully demonstrated with satisfactory sensitivity and specificity.This work opens a novel and easy route in designing advanced SASC and provides a sensitive tool for intracellular H_(2)O_(2)detection. 展开更多
关键词 Single-atomic site catalysts NANOPROBE Peroxidase-like activities BIOSENSING Living cell
在线阅读 下载PDF
Revealing the inhomogeneous surface chemistry on the spherical layered oxide polycrystalline cathode particles
6
作者 Zhi-Sen Jiang Shao-Feng Li +6 位作者 Zheng-Rui Xu Dennis Nordlund Hendrik Ohldag Piero Pianetta Jun-Sik Lee Feng Lin Yi-Jin Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第2期81-86,共6页
The hierarchical structure of the composite cathodes brings in significant chemical complexity related to the interfaces,such as cathode electrolyte interphase.These interfaces account for only a small fraction of the... The hierarchical structure of the composite cathodes brings in significant chemical complexity related to the interfaces,such as cathode electrolyte interphase.These interfaces account for only a small fraction of the volume and mass,they could,however,have profound impacts on the cell-level electrochemistry.As the investigation of these interfaces becomes a crucial topic in the battery research,there is a need to properly study the surface chemistry,particularly to eliminate the biased,incomplete characterization provided by techniques that assume the homogeneous surface chemistry.Herein,we utilize nano-resolution spatially-resolved x-ray spectroscopic tools to probe the heterogeneity of the surface chemistry on LiNi0.8Mn0.1Co0.1O2 layered cathode secondary particles.Informed by the nano-resolution mapping of the Ni valance state,which serves as a measurement of the local surface chemistry,we construct a conceptual model to elucidate the electrochemical consequence of the inhomogeneous local impedance over the particle surface.Going beyond the implication in battery science,our work highlights a balance between the high-resolution probing the local chemistry and the statistical representativeness,which is particularly vital in the study of the highly complex material systems. 展开更多
关键词 Ni-rich CATHODE x-ray NANOPROBE redox heterogeneity surface chemistry
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部