期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于双层BiGRU网络的哺乳动物组织m^(6)A甲基化位点预测
1
作者 李慧敏 陈鹏辉 +3 位作者 唐轶 徐权峰 胡梦 王煜 《生物化学与生物物理进展》 SCIE CSCD 北大核心 2023年第12期3032-3044,共13页
目的N6-甲基化腺苷(N6-methyladenosine,m^(6)A)是RNA中最常见、最丰富的化学修饰,在很多生物过程中发挥着重要作用。目前已经发展了一些预测m^(6)A甲基化位点的计算方法。然而,这些方法在针对不同物种或不同组织时,缺乏稳健性。为了提... 目的N6-甲基化腺苷(N6-methyladenosine,m^(6)A)是RNA中最常见、最丰富的化学修饰,在很多生物过程中发挥着重要作用。目前已经发展了一些预测m^(6)A甲基化位点的计算方法。然而,这些方法在针对不同物种或不同组织时,缺乏稳健性。为了提升对不同组织中m^(6)A甲基化位点预测的稳健性,本文提出一种能结合序列反向信息来提取数据更高级特征的双层双向门控循环单元(bidirectional gated recurrent unit,Bi GRU)网络模型。方法本文选取具有代表性的哺乳动物组织m^(6)A甲基化位点数据集作为训练数据,通过对模型网络、网络结构、层数和优化器等进行搭配,构建双层Bi GRU网络。结果将模型应用于人类、小鼠和大鼠共11个组织的m^(6)A甲基化位点预测上,并与其他方法在这11个组织上的预测能力进行了全面的比较。结果表明,本文构建的模型平均预测接受者操作特征曲线下面积(area under the receiver operating characteristiccurve,AUC)达到93.72%,与目前最好的预测方法持平,而预测准确率(accuracy,ACC)、敏感性(sensitivity,SN)、特异性(specificity,SP)和马修斯相关系数(Matthews correlation coefficient,MCC)分别为90.07%、90.30%、89.84%和80.17%,均高于目前的m^(6)A甲基化位点预测方法。结论和已有研究方法相比,本文方法对11个哺乳动物组织的m^(6)A甲基化位点的预测准确性均达到最高,说明本文方法具有较好的泛化能力。 展开更多
关键词 n6-甲基位点 双向门控循环单元 碱基序列 深度学习
在线阅读 下载PDF
Prediction of RNA m6A Methylation Sites in Multiple Tissues Based on Dual-branch Residual Network
2
作者 GUO Xiao-Tian GAO Wei +2 位作者 CHEN Dan LI Hui-Min TAN Xue-Wen 《生物化学与生物物理进展》 2025年第11期2900-2915,共16页
Objective N6-methyladenosine(m6A),the most prevalent epigenetic modification in eukaryotic RNA,plays a pivotal role in regulating cellular differentiation and developmental processes,with its dysregulation implicated ... Objective N6-methyladenosine(m6A),the most prevalent epigenetic modification in eukaryotic RNA,plays a pivotal role in regulating cellular differentiation and developmental processes,with its dysregulation implicated in diverse pathological conditions.Accurate prediction of m6A sites is critical for elucidating their regulatory mechanisms and informing drug development.However,traditional experimental methods are time-consuming and costly.Although various computational approaches have been proposed,challenges remain in feature learning,predictive accuracy,and generalization.Here,we present m6A-PSRA,a dual-branch residual-network-based predictor that fully exploits RNA sequence information to enhance prediction performance and model generalization.Methods m6A-PSRA adopts a parallel dual-branch network architecture to comprehensively extract RNA sequence features via two independent pathways.The first branch applies one-hot encoding to transform the RNA sequence into a numerical matrix while strictly preserving positional information and sequence continuity.This ensures that the biological context conveyed by nucleotide order is retained.A bidirectional long short-term memory network(BiLSTM)then processes the encoded matrix,capturing both forward and backward dependencies between bases to resolve contextual correlations.The second branch employs a k-mer tokenization strategy(k=3),decomposing the sequence into overlapping 3-mer subsequences to capture local sequence patterns.A pre-trained Doc2vec model maps these subsequences into fixeddimensional vectors,reducing feature dimensionality while extracting latent global semantic information via context learning.Both branches integrate residual networks(ResNet)and a self-attention mechanism:ResNet mitigates vanishing gradients through skip connections,preserving feature integrity,while self-attention adaptively assigns weights to focus on sequence regions most relevant to methylation prediction.This synergy enhances both feature learning and generalization capability.Results Across 11 tissues from humans,mice,and rats,m6A-PSRA consistently outperformed existing methods in accuracy(ACC)and area under the curve(AUC),achieving>90%ACC and>95%AUC in every tissue tested,indicating strong cross-species and cross-tissue adaptability.Validation on independent datasets—including three human cell lines(MOLM1,HEK293,A549)and a long-sequence dataset(m6A_IND,1001 nt)—confirmed stable performance across varied biological contexts and sequence lengths.Ablation studies demonstrated that the dual-branch architecture,residual network,and self-attention mechanism each contribute critically to performance,with their combination reducing interference between pathways.Motif analysis revealed an enrichment of m6A sites in guanine(G)and cytosine(C),consistent with known regulatory patterns,supporting the model’s biological plausibility.Conclusion m6A-PSRA effectively captures RNA sequence features,achieving high prediction accuracy and robust generalization across tissues and species,providing an efficient computational tool for m6A methylation site prediction. 展开更多
关键词 n6-methyladenosine site Doc2vec BiLSTM dual-branch residual network self-attention
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部