期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Hydrothermal N-doping assisted synthesis of poplar sawdust-derived porous carbons for carbon capture
1
作者 HUANG Ting FENG Bing +5 位作者 LU Peipei ZHANG Zhongliang NIU Qi MA Zonghu LI Kai LU Qiang 《燃料化学学报(中英文)》 北大核心 2025年第8期1191-1202,共12页
To optimize the CO_(2) adsorption performance of carbon materials,this study proposed a preparation method for biomass-based porous carbon through hydrothermal carbonization coupled with nitrogen source optimization a... To optimize the CO_(2) adsorption performance of carbon materials,this study proposed a preparation method for biomass-based porous carbon through hydrothermal carbonization coupled with nitrogen source optimization and K_(2)CO_(3) activation.The effects of different nitrogen sources(urea,piperazine,melamine,and polyaniline)and activation temperatures on the physicochemical features and CO_(2) adsorption characteristics of the porous carbons were systematically investigated.The results indicated that different nitrogen sources showed varying impacts on the CO_(2) uptake of porous carbons,and not all nitrogen sources enhanced the adsorption performance.The urea and piperazine doped porous carbons exhibited relatively low nitrogen contents and specific surface areas.Whereas the melamine doped carbons showed higher nitrogen contents and specific surface areas,but lacked narrow micropores,limiting their CO_(2) adsorption performance.In contrast,PAC-700,prepared using polyaniline as nitrogen source,featured a well-developed pore structure,abundant narrow micropores and pyrrolic-N groups,endowing it with enhanced CO_(2) adsorption capability.At 0℃/1 bar and 25℃/1 bar,the CO_(2) uptake of PAC-700 reached 6.85 and 4.64 mmol/g,respectively.Additionally,PAC-700 maintained a CO_(2) uptake retention ratio of 99%after 5 adsorption-desorption cycles and exhibited good CO_(2)/N_(2) selectivity of 22.4−51.6.These findings highlighted the advantageous CO_(2) adsorption performance of PAC-700,indicating its substantial application potential in the domain of carbon capture. 展开更多
关键词 n-doping porous carbon CO_(2)adsorption hydrothermal carbonization
在线阅读 下载PDF
The preparation and properties of N-doped carbon materials and their use for sodium storage
2
作者 YUAN Ren-lu HOU Ruo-yang +4 位作者 SHANG Lei LIU Xue-wei LI Ang CHEN Xiao-hong SONG Huai-he 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期770-795,共26页
Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applicatio... Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applications.N-doping has been widely investigated because of its similar atom radius to carbon,high electronegativity as well as many different configurations.We summarize the preparation methods and properties of N-doped carbon materials,and discuss their possible use in sodium ion storage.The relationships between N content/configuration and crystallinity,electronic conductivity,wettability,chemical reactivity as well as sodium ion storage performance are discussed. 展开更多
关键词 N-doped carbon material N configuration Preparation method Performance Sodium storage
在线阅读 下载PDF
A dual-surfactant template system for fabricating N-doped porous carbon nanorods for use as supercapacitor electrodes
3
作者 PANG Chao-ran WANG Tian-wei +7 位作者 SONG Cai-cheng LIN Hua YAN Wen-jin WANG Peng CHEN Long-ming HU Ying-xin LU Rong-wen ZHANG Shu-fen 《新型炭材料(中英文)》 2025年第5期1123-1135,I0036-I0050,共28页
The ability to control the preparation of one-dimensional(1D)porous carbon nanorods,especially during rapid polymerization,is key to their practical application.We report a method for synthesizing 1D porous carbon nan... The ability to control the preparation of one-dimensional(1D)porous carbon nanorods,especially during rapid polymerization,is key to their practical application.We report a method for synthesizing 1D porous carbon nanorods,characterized by the formation of rod-like mi-celles that are assembled from sodium palmitate and Pluronic F127,facilitated by protonated melamine,and subsequently converted into melamine-based N-doped polymer nanorods which were carbonized to produce the corres-ponding N-doped carbon nanorods.The specific capacitance of the supercapacitor used the as-pre-pared N-doped nanorods as electrode material in a three-electrode system was calculated to be 301.66 F g^(-1) at a current density of 0.2 A g^(-1),with an ultra-high specific surface area normalized capacitance of up to 67.07μF cm^(-2).The N-doping and their one-dimensionality give the nanorods a low internal resistance and good stability,making them well suited for fundamental studies and practical applications ranging from materials chemistry to electrochemical energy storage. 展开更多
关键词 Carbon nanorods Dual-surfactant system Cooperative assembly process N-doped Supercapacitors
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部